• 締切済み

レーザを照射された原子が特定遷移に励起するのにかかる時間

物理系の学部四年です。 測定値を理論値と比較したいのですが、理論値が計算できず困っております。 Ca原子において1S0→1P1の冷却遷移に対応するレーザーを照射した際、原子がこの遷移(1S0→1P1)をするのにかかる時間、を計算するにはどうすればよいでしょうか。冷却遷移の波長、寿命、自然幅、レーザーの入射強度、共鳴周波数からの離調(ドップラー冷却のため)は既知です。 冷却遷移に対応する飽和強度の算出などを絡めて、量子光学分野の本を漁りつつ色々と計算を試みているのですが、「特定の遷移にかかる時間」について細かく記述されている本までは中々見つからず困っております。 どなたか詳しい方いらっしゃいましたら、ご教授お願いいたします。

みんなの回答

回答No.2

量子力学的にいえば、遷移に必要な時間というものはなく、あるものは瞬時に遷移し、あるものはある程度の時間を経過してから遷移するということになります。 そして統計をとると確率的に大半が遷移する時間というものが定義できます。これはその準位間の遷移寿命に等しいです。

noname#160321
noname#160321
回答No.1

遷移を正確に記述するためには「時間を含めたシュレーディンガー方程式」で記述する必要があり、計算するにはハイゼンベルクの行列式(?)法で時間を含めて計算するのだと聞きました。 なお私は素人です。

関連するQ&A

  • 励起状態への遷移について

    レーザー媒質が励起状態から自然放出によって基底状態にもどる原子の様子はexp(-t/τ)の形になりますが、逆に吸収によって励起される場合(励起強度Pをt<0でP=0、t>=0でP=P0とする)、その遷移過程は同じくexpの形になるのですか。

  • レーザー照射強度計算

     レーザー照射強度計算をしているのですが,私の計算結果では値が大きすぎる感じがしており,とても不安です。お手数ですが,以下の計算方法で正しいかどうかを確認していただきたいと存じます。どうかよろしくお願いいたします。 レーザー光の条件を,   波長          λ = 775 (nm)   パルスの半値全幅    τ = 150 (fs)   繰り返し周波数     f_r = 1000 (Hz)   平均パワー       E_ave = 700 (mW)   ビーム径        φW = 10 (mm) とします。このパルスレーザー光を   焦点距離        f = 150 (mm) のレンズで集光し,最も高エネルギーの部分におけるレーザー照射強度を計算します。 まず,回折限界の式からスポットの面積 A_f を求めます。   焦点でのスポット径   W_f = 4λf/πW = 14.8 (μm)   焦点でのスポット面積  A_f = π(W_f/2)^2 = 1.72×10^-6 (cm2) 次に,単パルスエネルギーを計算します。   単パルスエネルギー   E_p = E_ave / f_r = 0.700 (mJ) よって,単パルスレーザー照射強度 E_pa およびレーザー照射強度 E は,   E_pa / A_f = 409 (J/cm2)   E = E_pa / τ = 2.71×10^15 (W/cm2) = 2710 (TW/cm2) となります。…といいたいのですが,この値は余りにも大きく,かなり不安です。ちなみに,このレーザーは実際に存在し,この集光条件では音とともに名刺に穴があきます。 もしかしたら,フェムト秒レーザー特有の現象などを考慮に入れないといけないのでしょうか? どなたかご指摘をお願いいたします。

  • 光学遷移における選択則

    光学遷移における選択則を学習しています. 水素原子を考えたとき,パリティの対称性から1s→2pに遷移可能であることは理解できるのですが, 何故3s→4fは遷移できないのでしょうか?つまりΔl=±1という要請はどこからくるのでしょうか?

  • 気体分子の近赤外光吸収強度の温度依存に関して

    近赤外光を気体分子に入射すると、吸光反応が起こり、その時の吸収強度(吸収断面積)は温度に依存性があるということらしいのですが、その辺の理論を詳しく教えていただきたくて投稿しました。分子の振動・回転準位の遷移によって近赤外吸収が起こるらしいのですが、その分布が温度によって変わるということなのでしょか? 教えてください お願いします。

  • X線:結晶からの回折

    X線を用いた場合の、結晶からの回折強度を計算したいと思っております。ラウエの式は入射X線強度が含まれていないので、絶対値を知ることが出来ず、回折強度の相対値だけ求められます。私が知りたいのは入射X線に対する回折強度です。 webで下記のページの(1.8.5)式に強度計算式がのっています。 http://66.102.7.104/search?q=cache:7n5U49JEdXAJ:www.nihonkai.com/higata/data/X-ray.pdf+%E5%9B%9E%E6%8A%98++lorentz+%E5%BC%B7%E5%BA%A6+%E7%B5%90%E6%99%B6&hl=ja&client=firefox-a これを用いて計算すると、入射X線に対して出射X線強度が、1/10E25となってしまいます。私の経験上1/10程度の強度だと思うのですが。 また化学同人「これならわかるX線結晶解析」安岡則武著のp48に従って計算してみると入射X線強度が10E9倍になってしまいます(物理としておかしい)。 オーダーでよいので、算出例などを示して説明してくださるとうれしいです。また数式の載っているサイトや参考文献などありましたら教えてくださるようお願いいたします。

  • 結晶からの回折X線と入射X線の強度算出について

    X線を用いた場合の、結晶からの回折強度を計算したいと思っております。ラウエの式は入射X線強度が含まれていないので、絶対値を知ることが出来ず、回折強度の相対値だけ求められます。私が知りたいのは入射X線に対する回折強度です。 webで下記のページの(1.8.5)式に強度計算式がのっています。 http://66.102.7.104/search?q=cache:7n5U49JEdXAJ:www.nihonkai.com/higata/data/X-ray.pdf+%E5%9B%9E%E6%8A%98++lorentz+%E5%BC%B7%E5%BA%A6+%E7%B5%90%E6%99%B6&hl=ja&client=firefox-a これを用いて計算すると、入射X線に対して出射X線強度が、1/10E25となってしまいます。私の経験上1/10程度の強度だと思うのですが。 また化学同人「これならわかるX線結晶解析」安岡則武著のp48に従って計算してみると入射X線強度が10E9倍になってしまいます(物理としておかしい)。 オーダーでよいので、算出例などを示して説明してくださるとうれしいです。また数式の載っているサイトや参考文献などありましたら教えてくださるようお願いいたします。

  • 原子軌道、混成軌道について

    今量子学を勉強していて、分からないところがあるのですが、原子軌道が同じ主量子数でエネルギー準位が低いとs軌道、高いとp軌道となるのはなぜですか? また高いエネルギー準位にある原子に光が入射すると誘導放出という現象が起こるようなのですがなぜですか?ある参考書には光が入射すると二つの原子軌道(エネルギー準位が低い時と、高い時の原子軌道)が空間的な干渉を起こすからとあるのですがなぜそのような事が起こるのでしょうか? 質問ばかりですいません・・・。 回答よろしくお願いします。

  • 赤方偏移

    遠くの銀河からの光が赤方偏移するのは、宇宙空間そのものが膨張しているためだそうですが、その銀河が遠ざかる速さを計算する場合、私の読んだ本には、特殊相対性理論のドップラー効果の式で計算すると書いてある本が複数ありました。宇宙空間が膨張しているとして一般相対性理論で計算する場合とほとんど同じなのでしょうか。また、宇宙空間そのものが膨張しているとして計算する場合、どのような計算式になるのでしょうか。

  • 反転分布の必要性について

    レーザーの発振条件に反転分布というものがあり、これは基底状態(≒レーザー下準位)にある原子密度n1より励起状態(レーザー上準位)にある原子密度n2の方が多い状態、つまりn2-n1>0であるような状態を作り出すことだそうですが、なぜこの条件になるのでしょうか? ものの本にはこの状態を作り出す必要性として「吸収より放出の方が多い状態にするために・・」などと書かれていましたが、そもそも下準位にある原子が吸収する波長と、上準位にある原子がレーザー遷移で放出する波長は異なり、誘導放出は後者のレーザー遷移に伴って起こる現象なので、純粋にn2の原子数だけで放出量が決まってしまい、吸収量との相対的な関係(n2-n1)を考えるというのは意味がわかりません。発振させるのになぜn1との関係が必要なのでしょうか。 この考え方、どこが誤っているのでしょうか、詳しい方ご教示ください。

  • どのような統計分布?

     入射光としてパルスレーザーを用いた蛍光測定を行っております。検出を高感度に行うため,入射パルスと同期して生じた蛍光のフォトン数をカウントし,そのカウント数から蛍光強度を求めたいと考えております。  ここで一つ問題があるのですが,入射光のパルス幅が非常に狭いため,各入射パルスに対して蛍光が発生したかどうかは判別できますが,一回の入射光パルス内で複数の蛍光フォトンが発生していても,そのフォトン数を正確に数えることができません。この場合,カウント数は1カウントと数えられてしまいます。よって,蛍光カウント数と入射パルス数との値が近くなってきた場合,蛍光強度は蛍光カウント数に比例しなくなり,下の式には従わなくなってきます。    蛍光カウント数   ---------------- = 蛍光強度 (強度が低いときのみ成立)    入射光パルス数  なぜなら,上の式が成り立つ前提条件として,「検出する各パルスが,蛍光1フォトンによるものである」という条件があるからです。つまり,1パルスの入射光に対して,蛍光が2光子含まれる確率,および3光子含まれる確率が無視できなくなってくると,蛍光強度は実際の強度よりも低く見積もられることになります。  何らかの統計的な手法を用いることによって,正確な蛍光強度を算出できるのではないかと思うのですが,一体どのような統計分布に従うのか,具体的にどのような計算をして蛍光カウント数を処理すればよいのか分かりません。  どうか,よろしくお願いいたします。