• ベストアンサー

u=w(t^2)のw(t^2)の意味…。

w = w(x)を微分方程式 4xw'' + 2w' + w = 0 の解とする。独立変数xをx = t^2によりtに変換し、u=w(t^2)とおくときuのみたす微分方程式を求めよ。 という問題があるのですが、質問はきわめて基本的なことかもしれませんが、 u=w(t^2) という式があらわしている意味がよく分かりません。例えば y(x) = x だったら普通に y = x f(x) = x と書いているのと同じなのですよね?それの()の中が2乗になっているというのは?とよく分からなくなってしまいます。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

括弧の中にx^2などが入っている場合ですね。ここでは分かりやすく例を用いて説明したいと思います。 もし、 y = f(x) で、 f(x) = x + 3 なら、f(x^2)というのは、上のxの部分にx^2を代入しました。という意味で、 f(x^2) = x^2 + 3 となります。 ですから、u = w(t^2)というのは、もともと、u = w(x)のような関数があって、そのxにt^2を代入した。という意味です。 ご理解いただければ幸いです。

nabewari
質問者

お礼

回答ありがとうございます。 理解できたと思います。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 大学院入試の微分方程式の問題がわかりません!

    問題の式を書くとややこしいので画像を添付しました。 【初期条件: y(0)=y0,y'(0)=y1】 画像の微分方程式について (1) 変数変換 u=( x^2 + 2 )y を行って、uに関する微分方程式を導け (2) (1)で導いた微分方程式を解くことで、元の微分方程式の解yを求めよ (3) 【x→∞】lim y(x)を計算せよ また、【x→-∞】lim y(x)が存在するためのy0,y1の条件を求めよ (1)の変数変換を行うときに uを微分してu' u'' を出し それらをy y' y'' の式に直して代入すればできると思うのですが その変形がややこしすぎて何回やっても間違えてしまいます そこで知識ある皆様のお力をお貸しいただければと思い質問しました。 何卒よろしくお願い致します。

  • 微分方程式のシャルピーの解法について

    シャルピーの解法に沿って2変数関数u=u(x,y)を含めた微分方程式F(x,y,u,p,q)=0 (p=∂u/∂x,q=∂u/∂y)の解を求める際に特性方程式{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]というのがでてきますが、これを導く手順についていくつか分からない点があります。 手順1:pとqを共にx,y,uの関数で表し、p=∂u/∂x=p(x,y,u),q=∂u/∂y=q(x,y,u)とする。 ※質問ですがuはxとyの関数なので、xやyで偏微分すると同じくxとyの関数になると思うのですが、ここではあえてそのxとyの式を変形してu=(x,y)を入れ込むということでしょうか? 手順2:2変数関数u=u(x,y)の全微分duはdu=(∂u/∂x)dx+(∂u/∂y)dy=pdx+qdyとなり、これを変形するとpdx+qdy-du=0となる。この式を(1)とおく。(1)はu=u(x,y)-u=C [Cは任意定数でuは独立変数]の解を持つので、積分可能と言える。 ※質問ですが、"(1)が解u=u(x,y)-u=Cを持つ"というのは一体どうして分かるのでしょうか? また、その後に"積分可能と言える"とありますが、"微分方程式が解をもてば、その微分方程式が積分可能である"とも言えるのでしょうか? 手順2の続きです。 (1)は積分可能条件を満たすので、ベクトルA=[p,q,-1]とおくと、A・(rotA)=0を満たす。これを計算すると、-p(∂q/∂u)+q(∂p/∂u)-{(∂q/∂x)-(∂p/∂y)}=0という関係式が導ける。この式を(2)と置く。 手順3:p,qを求めるためにもう1つ関係式G(x,y,u,p,q)=b(bは定数)を用意する。ここでFもGもx,y,uの関数であることが言える。次に(2)の式を解くために必要な(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)を得るためFとGをx,y,uでそれぞれ偏微分する。 まずxで偏微分すると、Fは(∂F/∂x)+(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)=0,Gは(∂G/∂x)+(∂G/∂p)*(∂p/∂x)+(∂G/∂q)*(∂q/∂x)=0という式になる。 ※ここで質問ですが、これらの式はどう解釈したらいいのでしょうか? 例えばF(x,y,u,p,q)=px-qy-u=0という式があった場合x,y,u,p,qを独立変数ととらえた場合(∂F/∂x)=pという式が出てくると思います。 しかし、(∂F/∂x)とは別に(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)という項があるのを見ると、一体この2つの項はどこから出てきたのかが疑問に思えます。xの関数であるpとqの合成関数の微分のようにも見えます。ただuもxとyの関数であるはずですので、なぜ(∂u/∂x)といった項が出てきていないのか分かりません。 手順3の続きです。 次にFとGをyで偏微分すると、Fは(∂F/∂y)+(∂F/∂p)*(∂p/∂y)+(∂F/∂q)*(∂q/∂y)=0,Gは(∂G/∂y)+(∂G/∂p)*(∂p/∂y)+(∂G/∂q)*(∂q/∂y)=0となる。 最後にFとGをuで偏微分すると(∂F/∂u)+(∂F/∂p)*(∂p/∂u)+(∂F/∂q)*(∂q/∂u)=0,Gは(∂G/∂u)+(∂G/∂p)*(∂p/∂u)+(∂G/∂q)*(∂q/∂u)=0 ※ここでも同じ質問ですが、これらの式はどのように考えたらでてくるのか疑問です。 さらにこの手順に従って進めると上に挙げたFとGをx,y,uで偏微分した6つの式から(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)の値が出てきてこれらを(2)の式に代入することで、最終的に{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]という特性方程式が出て、この中の2つを用いてもう1つのpとqの関係式Gを求めるようです。このFとGからpとqの値が求まるので、これを用いて解を求めるようになっています。 長くなりましたが、私が間違っている箇所も含めて解説していただければと思います。

  • 無限領域での波動方程式の計算に出てくる偏微分方程式

    波動方程式の計算に出てくる、偏微分方程式の解の計算方法が分かりません。 本から引用します: ここで、弦を伝わる波の問題などで使われる波動方程式 { (∂^2) u(x,t) } / (∂t^2) - c^2 * { (∂^2) u(x,t) } / (∂x^2) = 0 (式7.33) を考えてみよう。ここで、u(x,t)は座標xの位置での時刻tにおける弦の変位を表わし、cは正の定数とする。そして、∞に長い弦を考え(すなわち、-∞<x<∞の範囲で考え)、境界条件は、すべての t>=0 に対して u(x,t)→0 (式7.34) (x→±∞) を満たすとする。つまり、無限遠では波が存在しないとする。更に初期条件は u(x,0) = f(x) { ∂u(x,t) } / ∂t |t=0 = 0 (式7.35) とし、ここでf(x)は x→±∞ で0に近付く絶対可積分な関数であるとする。また、上式の縦棒(|)の後のt=0は、「t=0での偏微分の値」という意味である。(式7.35)のように初期条件として2つの式を与えるのは、(式7.33)がtについて2階の微分方程式だからである。今の場合、xの無限領域での関数u(x,t)を取り扱うので、フーリエ変換を使った解法を用いればよい。 例題 初期条件(式7.35)と境界条件(式7.34)を満たす(式7.33)の解を求めよ。 [解] u(x,t)のxについてのフーリエ変換を F(k,t) = ∫[-∞,∞] u(x,t) e^(-ikx) dx (式7.36) と表す。(式7.33)にe^(-ikx)を掛け、xについて-∞から∞まで積分すると、熱伝導方程式(式7.20)を導いたときと同様な考え方から、 { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 (式7.37) ←質問箇所 を得る。この微分方程式の解は、 F(k,t) = C[1](k) e^(ickt) + C[2](k) e^(-ickt) (式7.38) ←これをどう導いたのかが不明 であることが、代入すれば確かめられる。ここで、C[1](k)、C[2](k)は任意のkの関数で ある。 ・・・以上、引用終わり。 私は偏微分方程式自体、変数分離とかいう方法でサラッとやっただけで、上記の方法は見たことがありません。ネットで検索しましたが、同様の式を見つけることが出来ませんでした。そんな私が敢えて解こうとすると: { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 第2項を右辺に移項する { (∂^2)F(k,t) } / (∂t^2) = - (c^2) * (k^2) * F(k,t) 左辺の(∂t^2)と右辺のF(k,t)を交換する { (∂^2)F(k,t) } / F(k,t) = - (c^2) * (k^2) * (∂t^2) 両辺をtで積分する(もう既に未知の領域…きっと2乗が減って1乗になるのでしょう…) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * ∫(1)(∂t^2) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * t (∂t) + C[1](k) もう一度両辺をtで積分するだろう雰囲気を漂わせたところでやめておきます。 もしかしたらln{F(k,t)}を積分しなければならないのでは、と思ったら思考が停止しました。多分、既に間違っているのでしょう。 …ということで、この偏微分方程式の解き方を教えて下さい。お願いします。

  • 偏微分方程式の問題です。準線形方程式 u・(∂u/

    偏微分方程式の問題です。準線形方程式 u・(∂u/∂x) + (∂u/∂y) = 1 の解で、初期曲線がx0(s)=s、y0(s)=2s、u0(s)=-s (0≦s≦1)で与えられるものを求めよ。 自分で解いてみたら途中までこんな感じになりました。 >>dx/dt = u、dy/dt = 1、du/dt = 1を解くと x=ut+s、y=t+2s、u=t-s おそらくこの連立方程式を解くのかと思うのですがうまく行きません。どうすれば良いのでしょうか。回答お願いいたします!

  • 微分方程式 y''=y'

    F(x,y',y'')=0は、yを独立変数としてy'=zとおけば、微分の連鎖法則により1階微分方程式F(y,z,(dz/dy)z)=0に帰着する。この方法を用いてy''=y'を1階の微分方程式に変換して解け。 この問題の解き方を教えてください。 y=e^(λx)と置いて解く方法では解けるのですが、この問題で指定された解き方はどのような風に解けばいいのか分からないので…。

  • 偏微分方程式のラプラス変換による解法

    皆様よろしくお願いいたします。 関数u(x,t)のtに関する偏微分∂u/∂t=u_t、とxに関する2回偏微分∂^2 u/∂x^2=u_xxとおくとき 偏微分方程式 u_t = a*u_xx (aは正の定数) 初期条件:u(x,0) = 0 境界条件:∂u/∂x = u_x = -k (kは正の定数)        lim[x→∞]u(x,0) = 0 をラプラス変換して解を求めようとしてますが、ラプラス変換した式が導けません。 偏微分方程式の解は分かっていているので、解をラプラス変換すると答えは次式になるようです。 U(s,x) = k√a・exp( -x*√(s/a) ) / s^(3/2) どのように導けばこうなるのかご教示ください。 ちなみに偏微分方程式の解は次式になります。(上式に入れて成り立つことを確認済み)  u(x,t)=2k√(at/π)・exp(-x^2/(4at)) - kx・erfc(x/√(4at)) (※erfcはガウスの余誤差関数です) 【途中までやってみた計算経過】 偏微分方程式を→s、x→yへそれぞれラプラス変換して整理すると U(s,y)=ak/{y(y^2-s/a)} となりました。これをy→xへラプラス逆変換すると U(s,x) = -ka^2/s + ( ka^2/(2s) ) exp(-x√(s/a) ) + ( ka^2/(2s) )exp(x√(s/a) ) となり、答えになりません。 しかもこれだと3項目が境界条件lim[x→∞]u(x,0) = 0に従わず∞に発散してしまいます。

  • 3変数の基本対称式に関する不等式って?

    2変数の基本対称式 u=x+y v=xy において、xとyが実数のとき、x,yを解とする方程式 0=(t-x)(t-y)=t^2-ux+v の判別式が0以上なので、 u^2-4v≧0 が成り立ちます。なおx,yが正のとき、この不等式は相加相乗平均の関係を意味します。 では3変数のときはどうなるのでしょうか? u=x+y+z v=xy+yz+zx w=xyz において、xとyとzが実数のとき、x,y,zを解とする方程式 0=(t-x)(t-y)(t-z)=t^3-ux^2+vx-w において、3つの実数解をもつということは、2つの極値の積が負ということですが、そのときu,v,wの間にはどのような不等式が成り立つのでしょうか?

  • どう解答を書けばいいかわかりません

    ∂f/∂t=a(∂f/∂r) ・・・ (1) の独立変数(r,t)を以下の(x,y)に変換することを考える。 x=bt+r y=r^2 このときの∂f/∂t ∂f/∂rをxおよびyに関する微分に変換したのち、 方程式(1)を(x,y)座標で表せ という問題なんですが、『座標で表せ』とはどのように答えたらいいか分かりません。教えてください。お願いします。 ちなみに ∂f/∂t=b(∂f/∂x) ∂f/∂r=(∂f/∂x)+2√y(∂f/∂y) となることは導きました。

  • 次の微分方程式の問題を解いてください

    (1)関数z(x) (x>0)に関する方程式 (x^2)z''+3xz'+z=0・・・(*) を考える。x=e^tすなわちt=logxと変数変換したときz(e^t)=w(t)の満たす微分方程式を求めよ (2)微分方程式(*)の一般解を求めよ (3)(*)の解でさらに条件 x(1)=0, ∫[e,1] z(x)dx=1 を満たすものを求めよ

  • 微分方程式の偏微分問題について

    微分方程式の偏微分問題について 大学で微分方程式の授業を履修しているのですが、指定された問題がまったくわかりません 問u0>0,p>1とする。次の1階単独ODEの初期値問題について、(u0の0は小文字でユーゼロです) du/dt=u^p (t>0) u(0)=u0 u(t)が発散する時刻をTmaxとするとき、解u=u(t) (0<t<Tmax)を求めよ という問題です。 偏微分の計算の説明を少しされただけなので、このような文章問題はどうすればいいのかまったくわかりません。 一応この問題の前に 『1階単独ODEの初期値問題と局所解の一意存在定理』 2変数関数f(x,y)は点(x0,y0)の近くで偏微分できて、さらにその偏導関数fx(x,y),fy(x,y)は連続とする(これは短く「点(x0,y0)の近くで連続微分可能である」という)。そのとき、次の1階単独ODE y´=f(x,y), (y=y(x);unknown) について、y(x0)=y0をみたす解がx=x0の近くでただ1つ存在する という定理が書いてありましたが、説明されていないので自分で読むだけではまったく理解できませんでした。 明日までなので焦っています。 どなたか問題を解いて下さる方はいらっしゃいませんでしょうか?

このQ&Aのポイント
  • 初期設定中にデバイスのプライバシー設定が進まず困っています。ノートパソコンを使用しており、有線LANで接続しています。
  • ノートパソコンの初期設定でデバイスのプライバシー設定が進まなくて困っています。他の方から同じ問題について質問があり、回答を見たところ、プライバシー設定の内容を全て確認する必要があることがわかりました。スクロール画面を表示するためのマウス操作がわからないので、教えてください。
  • 初期設定中にデバイスのプライバシー設定から進むことができません。他の方が同じ問題を質問していて、回答を見ると、プライバシー設定の内容をすべて確認する必要があるようです。マウスの操作でスクロール画面を表示する方法を教えてください。初めてのノートパソコンでキーボード操作がわからないため、困っています。
回答を見る