• ベストアンサー
  • 困ってます

微分記号(dy/dx)について質問です。

微分記号(dy/dx)について質問です。 例えば、 dy/dx=x という微分方程式を考えます。 両辺をxで積分すると、 ∫(dy/dx)dx = ∫x dx ・・・(1) となって ∫dy=∫x dx ・・・(2) ⇔ y = (1/2)x^2 + C (Cは積分定数)となります。 ここで質問です。(1)から(2)へ変形するときどうして、(dy/dx)dx = dx 、とできるのでしょうか? dy/dx は、分数じゃなくて記号だと習ったのに、あたかも普通の数字や文字であるかのように計算(約分)できるのはどうしてですか?形式的にしか理解していないのでその計算の意味を教えてください。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数5719
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

∫(dy/dx)dx = ∫dy は、(右辺→左辺と見れば)置換積分の公式そのものです。 >あたかも普通の数字や文字であるかのように計算(約分)できるのはどうしてですか? ライプニッツという頭のいい人が、微分・積分の上手い表記法を編み出したからです。習ったとおり、「dy/dx は、分数じゃなくてあくまで記号」です。 とは言ったものの、実際、見かけ上、分数みたいに計算してたいていうまく行きます。高校段階ではなんとなくうまく行くとしか説明しようがありません。大学に行けばdy/dxではなくて、dx、dyといった単体の記号の意味をもう少し深く勉強することになります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 高校では形式的なことしか習わず、理解が中途半端だった気がします

関連するQ&A

  • dxやdyの本当の意味は?

    宜しくお願いします。 昔、高校で dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。 が、微分方程式ではdyとdxをばらばらにして解を求めたりします。 「両辺をdy倍して…」等々、、、 また、積分の置換積分では約分したりもしますよね。 結局、dy/dxは一塊ではないんですか??やはり分数なのですか? (何だか高校の数学では騙されてたような気がしてきました) 一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい のにとも思ったりします。 実際の所、 dxの定義は何なんですか? dyの定義は何なのですか? 本当はdxとdyはばらばらにできるのですか? どなたかご教示いただけましたら幸いでございます。

  • 微分について

    微分方程式 dy/dx=P(x)/Q(y)を解くときに、記号dy/dxをあたかも分数であるかのように見て切り離し、Q(y)dy=P(x)dxという形の方程式を作り、それから両辺を積分して計算するのについて、「記号dy/dxは分数ではないから、この操作はおかしい」と問われた場合の弁明をするには、どうしたらいいでしょうか?誰か教えて下さいm(_ _)m

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

その他の回答 (1)

  • 回答No.1

dx や dy に単独での意味を与えて dy/dx を普通の分数と考える体系もあるのですが、 高校や大学初年級では習いません。 (dy/dx)dx = dy は、そっちの世界の式です。 dy/dx を分数と考えないのならば、∫記号をつけて ∫(dy/dx)dx = ∫dy と書きましょう。 この式の右辺は、覚えやすいように 少し文学的な書き方がしてありますが、 より散文的には ∫(dy/dx)dx = y+C (Cは積分定数) です。 これは、微積分学の基本定理 「(定)積分は微分の逆操作である」そのものです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 (dy/dx)dx = dy というだけでは意味がないのですね・・。

関連するQ&A

  • dy=dx

    こんにちは さっそく質問なのですが、 例えば、微分方程式や置換積分でdy/dx=1⇒dy=dxのような式変形を使いますよね。 が、このような変形をしていいのはなぜですか?

  • dy/dx・dxは置換積分を使ってdy?

    次の微分方程式を解け 2yy'=1 とありました。解答は -------------------------------- 2y・dy/dx=1の両辺をxで微分して ∫2y (dy/dx) dx=∫dx 置換積分法により ∫2y dy=∫dx ゆえに y^2=x+C (Cは任意定数) -------------------------------- となっています。ここで疑問に思ったのが ”置換積分法により”という箇所です。 これはdy/dx・dxを”約分して”dyにしてはならず、 ”置換積分法により”dyにしなくてはならない、 ということが言いたいのだと解釈しました。 疑問1. そこで、ここにおける”置換積分”とは具体的には どのような作業を指すのでしょうか? 疑問2. 以下は全て同じことを表現したいと意図している のですが、誤解を招くことはないでしょうか? 2y・dy/dx・dx    2y (dy/dx)・dx   2y dy/dx dx 2ydy/dx dx 2y*dy/dx*dx 2yとdyの間に半角スペースを入れた方がよいか ・と*と半角スペースどれが妥当か dy/dxは()でくくるべきか などなどです。

  • dy/dx (y+1)を積分して(y+1)^2?

    次の微分方程式の一般解を求めよ。 (1+y) (d^2y)/(dx^2) + (dy/dx)^2 = 0 dy/dx = p とおくと、      (1+y)p (dp)/(dy) + p^2 = 0 となり、      (i) (1+y) (dp)/(dy) + p = 0      (ii) p = 0 の2通りが考えられる。 (i)の場合      1/p (dp)/(dy) + 1/(1+y) = 0 の両辺をyで積分して      log |p(y+1)| = C_1 つまり、      dy/dx (y+1) = C_1 両辺をxで積分して、      (y+1)^2 = C_1x + C_2     ←? という解を得る。 ・・・と本に書いてあります。しかし、 「両辺をxで積分して」の計算は間違ってないですか? 自分が計算すると、      dy/dx (y+1) = C_1      ∫ (y+1) dy/dx dx = C_1∫dx      ∫ (y+1) dy = C_1∫dx      ∫y dy + ∫1 dy = C_1∫dx      y^2/2 + y = C_1x + C_2 になります。 積分して(y+1)^2になるなら、元々は2(y+1)じゃないといけないですよね、きっと。 ということで、どなたか検算をお願いします。

  • 微分方程式の途中の変形が分かりません。

    変数分離形の微分方程式 (x^2*y-x^2)dy=(x*y^2+y^2)dx を解くのですが、 ∫(1/y-1/y^2)dy=∫(1/x-1/x^2)dx と変形し、 log|y|+1/y=log|x|-1/x+C (C:積分定数) まで、解きました。 これはy=○○の形にどうやって変形すればよいのでしょう? 何を使うなどのヒントでいいので、よろしくお願いします。

  • x^2+y^2=aをxについて微分すると

    陰関数の微分で2x+2ydy/dx=0からdy/dx=-x/yという計算は一次方程式の解法を知っていれば計算できてしまいますが、最後の式を微分方程式と見た場合、その答えはx^2+y^2=c(cは積分定数)となるのでしょうか。これが正しいとしても計算の仕方が分からないのですが・・・よろしくお願いいたします。

  • 2階微分方程式の問題について

    下記の微分方程式についての質問です。 k * (d^2 y/dx^2) = a * y^2 …(1) ここで、k, a は定数、(d^2 y/dx^2)はyの2階微分(つまりy'')を表しています。また、* は積を表しています。 この2階微分方程式の一般解を求めたいのですが、詰まっています。 私のやり方は、まず(d^2 y/dx^2)=y'' として k * y'' = a * y^2 …(2) (2)の両辺に2y'をかけて k*y''*2y' = a * y^2 * 2y' これより ( k * (y')^2 )' = ( 2a* (y^3/3) )' 両辺を積分して k * (y')^2 = (2a/3) * y^3 + C1 …(3) (ただしC1は積分定数) このあと、変数分離すればとけるはずなのですが、 その先が詰まっています。 C1があるせいで積分できないのです。 これは一般解が求められないのでしょうか? また、初期条件は x=0でy=y0、x→∞でy=0 なので、x→∞でy'=0 と考えて、(3)よりC1=0 として考えると、 うまく変数分離できて y^(-3/2) dy = √(2a/3k) * dx ∴ y^(-1/2) = (-1/2) * √(2a/3k) *x + C2 (C2は積分定数) ∴ y = ((-1/2) * √(2a/3k) *x + C2)^(-2) …(4) 初期条件より C2 = y0^(-1/2) という感じで解いていったのですが、 どうやら解答は y = p * (x + q)^(-2) ただし、p = 6k/a, q = (a*y0/6k)^(-1/2) となるようです。。。 何度見直してもこうならないのですが、 私の計算ミスでしょうか。。。? (i) 式(3)の一般解 (ii) 式(4)が合っているか に関して、どなたか知恵をお貸しいただければ幸いです。 数式見づらくて恐縮です。

  • 微分方程式の問題です!!

    微分方程式の問題です。y'=(yの二乗-1)tan(x)という微分方程式を解きたいのですが、積分定数Cの使い方に困っています。下は解答なのですが、 (1) y'=(yの二乗-1)tan(x) (2) 1/(yの二乗-1)(dy/dx)=tan(x) (3) (1/2)log{(y-1)/(y+1)}=-log(cos(x))+c (4) (y-1)/(y+1)=1/(C×cos(x)の二乗) (5) y=(C×cos(x)の二乗+1)/(C×cos(x)の二乗-1) とあるのですが、(3)から(4)になるのがよく分かりません。積分定数Cの位置がおかしくないですか? (y-1)/(y+1)=C/(cos(x)の二乗)だと思う(というよりどっちでもいいと思う)のですが、これではダメでしょうか?回答よろしくお願いします。

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 微分方程式に関する問題です。

    (x^2){(d^2)y/d(x^2)} - x(dy/dx) + y = x^3    (*) ********************************************************* (1)y = xφ(x)が微分方程式(*)の解であるとき、φのみたす微分方程式を求めよ。 ********************************************************* y = xφ(x)からy' , y''を計算して代入し、 φ''(x) = x/2 となりました。(答えの書き方はこれでいいのか分かりません。) ********************************************************* (2)φ'(x)を求めよ。 ********************************************************* (1)の答えの両辺を積分して φ'(x) = (x^2)/4 + C となりました。 ********************************************************* (3)微分方程式(*)の一般解を求めよ。 ********************************************************* (3)のとき方が分かりません。 どのようにして解いていけばいいのでしょうか? よろしくお願いします。

  • dy=dy/dx・dxの求め方

    dy/dx=dy/dx から両辺にdxを掛けたようになっておりますが、 dy=dy/dx・dx を求めるために 微分法等の公式を活用してどのようにすれば求められるのでしょうか? dy/dx はyをxで微分するということを表しており、dy/dx は分数とは異なると理解しておりますが・・・ どうぞ宜しくお願い致します。