• ベストアンサー
  • すぐに回答を!

ベクトルの内積なのですが・・

ベクトルの内積の説明文に「 → →  →  →            → → a ・b=|a||b|cosθ    である。aとb のなす角をθとすると-1≦cosθ≦1であるから  →    →  → →   →   →       -|a||b|≦a・b ≦|a||b|  すなわち  → →    →   → |a・b|≦|a||b|  が成り立つ」とあったのですが、どういうつながりでいきなり「成り立つ」ということになったのかわかりません・・  教えてください!! 宜しくお願いします・・!!

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数71
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

a,bはベクトルで、xは実数です。→は省略 a・b=xとする -|a||b|≦x≦|a||b| の時、x^2の範囲は分かりますか? 0≦x^2≦|a|^2|b|^2 となります。これに√をとると |x|≦|a||b| x=a・bだから、 |a・b|≦|a||b|   #1さんの説明の方が分かりやすいかも。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。お礼が遅くなり申し訳ございませんでした。

その他の回答 (1)

  • 回答No.1

    →  →   → →   →   →  -|a||b|≦a・b ≦|a||b| ・・・・(A) はわかりますよね。 次です。 絶対値について|x|<1と-1<x<1は同値です。 ですから(A)により  → →      →   →      →   → |a・b| ≦||a||b||=|a||b| となるのです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。お礼が遅くなり申し訳ございませんでした。

関連するQ&A

  • ベクトルの内積の問題です!!教えてください

    次のベクトルaベクトルの内積と、そのなす角θを求めよ。 (1)aベクトル=(-1,1),bベクトル=(√3-1,√3+1) (2)aベクトル=(1,2),bベクトル=(1,-3) 何から始めればいいのかがわかりません…。 よろしくお願いします。

  • ベクトルの内積について…

    こんばんは。 数Bでどうしてもわからないことが あるのです… ベクトルの内積のところなんですが、 → →  → → a・b=|a|・|b| ・cosθ ↑の式ではなぜcosθを使うのですか? sinθでもtanθでもなくcosθを使う 決定的な理由ってなんでしょう?? 高2でもわかる程度でご説明お願いします↓

  • ベクトルの内積

    ベクトルの内積を勉強していて、ふと思ったのですが、 ベクトルの内積計算において、 3つのベクトルをかけることはできるのでしょうか? ベクトルA,B,Cにおいて A・B = |A|・|B|COSθ となるのと同じように A・B・C =? これもどうにかして計算することはできるのでしょうか?

  • ベクトルの内積

    2つのベクトルの成す角を求めたいのですが、納得できる数値が得られず困っています。 ベクトルの内積の定義はA・B=|A||B|cosΘと理解しており、ここからcosΘを求めます。 ベクトルA(1,1,0)、ベクトルB(1,1,1)とした場合、二つの成す角は45度だと思うのですが内積の計算からはcosΘ=1/√2とはなりません。cosΘ=2/√6になりますので45度ではないという結果になります。 何故、そうなるのか納得できません。ここが納得できないと次のステップに進めません。 非常に稚拙な質問だと思いますが、どなたか教えてくださいませんでしょうか。よろしくお願いします。

  • 内積について

    →a=(p,2),→b=(-1,3),→c=(1,q)について、√2|→a|=|→b|で、→a-→bと→cのなす角が60°であるとき、p,qの値を求めよ。 ベクトルの内積を求める問題なんですが、cos60°として、なす角の公式に当てはめればいいのでしょうか? いまいち解き方がわからないので、どのような手順でやっていったらいいか、ヒントをください。お願いします。

  • ベクトルの内積

    ベクトルの内積について質問です。 ある問題で、 AB→=x→-y→ OM→=y→-x→ AB⊥OMのとき AB・OM=0より |x|^2-2x→・y→+|y|^2=0 となっているんですけど、これって普通に展開していますよね? 内積と掛算って一緒じゃないはずなのに普通に展開しても良いのでしょうか? a→・b→=|a→||b→|cosθを用いて出したのならこのときのcosθの値はどこにいったのでしょう? わかる方教えてください。

  • ベクトルの問題です。 (内積)>_<

    (1)|a→|=2 |b→|=3、|c→|=4 a→+b→+c→=0→でb→とc→のなす角をΘとするとき CosΘを求めよ。 (2)二つのベクトルx→とy→が直交し、 |x→|=1、|y→|=3である。α→=2x→ーy→とβ→=x→+py→が直交するような実数pの値と、|α→|、|β→|を求めよ。 この問題解けませんでした。 (1)は bとcのなす角をΘとするとき と書いてあるのでCosΘ=a×b/|a||b| の公式を使う問題だとおもいました。 それぞれ代入していこうと考えましたけど |a|と|b|のほかに|c|もあるので、 代入は全部できません。 まず、|a||b|を代入して、a×bの部分は|a| =a?と考えて、2を代入してよいのでしょうか? そうするとCosΘ=2×3/|2||3|となりますけど。。これだと、違います>_< どなたか教えてください。 (2)は 直交する条件は、a×b=0もしくはa1b1+a2b2=0 ですので、題意に書いてある|x→|と|y→|を いまこれは、”大きさ?”を表してる意味なので ”成分表示?”に変更して式をつくるのでしょうか?? まだ、大きさと成分表示とか色々ごちゃごちゃしてて はっきりしません>_< そのあとは、求まったxとyを用いて、題意のα=2x-yのxとyにその値を代入して行く~。。って流れでしょうか??>_< 結局良く解りませんでした、 どなたかベクトルの詳しい方、丁寧に教えて下さい お願いします。。 あと、上の説明とか、ベクトルの公式とかで、×を使いましたけど、点というのが記号でなかったので、×を使いました>_< 意味が違うと昔習いました。。 宜しくお願いします。  

  • 2つのベクトルの内積を求めよ?

    次の2つのベクトル→a,→bの内積を求めよ。 (1)→a(1,3,-2) →b(3,-2,-2) (2)→a(-1,5,3) →b(4,-2,1) という問題があったのですが、わからなかったので答えを見たところ 計算式が→a・→b=|→a||→b|cosθと書いてあったのですがこのcosθがどこからくるのかわかりません。。。教えてください。

  • ベクトルの内積

    問題:二つのベクトルの内積を(a,b)と書くとしよう。つぎの三式は同等であることを示せ(困難ならa,b∈R^2(←二乗)のケースで証明せよ) 1)(a,b)=a’,b 2)(a,b)=||a|| ||b|| cosθ(θはベクトルa,bに挟まれた角度 3)(a,b)=1/2(||a||^2+||b||^2-||a-b||^2) データ添付うまくできなかったのでここに直接書きました。^2は二乗のこ とです。 実は一時間後にテスト…ダメもとで回答待ってます(;_;)

  • 線形代数 内積について

    線形代数 内積について ベクトルaとベクトルbの内積をa・bと表します。 2つのベクトルの内積はa・b=|a||b|cosθで表されます。 内積とはベクトルbのベクトルaへの正射影と説明されていたのですが 定理より、a・b=b・aが成り立つことから、ベクトルaのベクトルbへの 正射影と考えても良いですか? また、a・b=|a||b|cosθにおける||記号は絶対値記号として捉えて 良いでしょうか? ご回答よろしくお願い致します。