• ベストアンサー

気体分子の連続性

電子が原子中でとびとびのエネルギーを持つ軌道を運動しているにもかかわらず、気体は、気体の分子運動論から、気体分子は連続的に動くことが知られています。 一見、矛盾しているように思えるのですが、これはどのように考えればいいのですか。

noname#98345
noname#98345
  • 化学
  • 回答数1
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • htms42
  • ベストアンサー率47% (1120/2361)
回答No.1

原子の中で電子は原子核との間に働く引力の場の中に存在しています。ある空間に閉じ込められている(束縛状態と言います)場合にエネルギーが不連続になります。隣の準位との間隔は束縛が強ければ(引力が強ければ)大きくなります。 簡単なモデルで考えます。 箱の中の運動に対応する1次元井戸型ポテンシャルの場合がたいていの量子力学の入門書には載っている筈です。 その時のエネルギー順位は E=n^2(h^2/8m/L^2) ん=1,2,・・・ になります。この式では運動物体の質量m、束縛領域の大きさLが分母に入っています。電子の運動のスケールで考えているときと気体分子の運動のスケールで考えているときでEの値に大きな違いがあることが分かると思います。 mを電子の質量、Lを原子の大きさとしたとき(A)と mを分子の質量、Lを気体の入っている容器の大きさとしたとき(B) のエネルギー準位を比べてみてください。 (B)の場合はエネルギーの間隔が狭くほとんど連続分布であると見ていいというのが分かるはずです。どういうエネルギーの値でも自由に取ることが出来るということになります。 気体分子運動論では比熱の値が出てきます。 2原子分子で定積モル比熱は5R/2です。これは重心の併進運動の自由度がx、y、zで3つ、重心周りの回転の自由度が2つの5つに加えた熱量が配分されるとして出てきます。このとき2つの原子の間隔は変わらないとしています。これは2つの原子は強いばねでつながっているので普通の熱エネルギーでは次のエネルギー順位に移ることが出来ないということを意味しています。 伸縮振動の部分に量子的なエネルギーが不連続という効果が強く出ています。この振動は赤外線の領域にあります。 量子力学の勉強をするとき、式だけを眺めてどんどん先に進むのではなくて、その式で表される量の大きさがどれくらいになるかというのもチェックしながら進むというのが大事なことだろうと思います。

noname#98345
質問者

お礼

丁寧に回答してくださり、 ありがとうございました。 とても参考になりました。

関連するQ&A

  • 理想気体

    理想気体では、((1)熱エネルギー、(2)温度)は原子、分子レベルではどのように説明されているかを調べています。 ざっと調べたところ、 (1)は、マクロな数の原子・分子の運動エネルギーと位置エネルギーの総和 で、 (2)は、物質を構成する分子・原子一つ一つの平均運動エネルギーの指標 ということが分かりました。 もう少し詳しく調べたいのですが、お勧めのサイトがありましたら、教えていただけると幸いです。

  • 気体の分子運動について

    気体の分子運動の分野で、 「運動の自由度が大きい気体分子は内部により多くエネルギーをためることができるため、温度が上がりにくい」 という説明を目にしたのですが、いまいち理屈がわかりません。 エネルギーをためる能力が高いと、どうして温度が上がりにくいのでしょうか? U=(3/2)nRT をみると、エネルギーがたまればたまるほど温度が比例しているように見えるのですが・・・ どなたか解説のほど、よろしくお願いいたします。

  • 気体分子運動論 2原子分子 3原子分子 なぜ振動は

    こんにちは、気体の分子運動論について確認させてください。また質問をさせてください。どうぞ宜しくお願いします。 気体の運動エネルギーを考える際、 単原子分子の場合、内部エネルギーの変化 ΔU = 3/2 nRΔT となりますが、この3の意味は単原子分子のとる自由度の数だと教わりました。 そしてその自由度とは、XYZ方向への並進運動とのことですね。 二原子分子の場合、これら3自由度の並進運動に加え、回転の自由度を加えるとのことでした。 回転は、二原子分子の線分をたとえば、z軸にそろえて載せた場合、X軸を回転軸とする回転、Y軸を回転軸とする回転の二つが加えられる。したがって、合計5の自由度があり、ΔU = 5/2 nRΔT となる。 Q1: もうひとつZ軸を軸とした回転(つまり鉛筆を両方の掌ではさんで回すような回転)については、他の二回転に比べて運動エネルギーが小さいため考えない、と理解しているのですが、いかがでしょうか。 Q2:並進、回転運動の他にも、自由度として振動が考えられますが、なぜこれは加えないのでしょうか。 また、三原子分子の場合は、二通りあり、直線分子の場合、非直線分子の場合に分けられると知りました。ただ、三原子分子の場合の内部自由エネルギー変化についての式が与えられておらず、考えてみました。 Q3: 直線分子の場合、二原子分子と同じ考えで、並進、回転運動の自由度の合計は5となりそうですが、どうでしょうか。ただ、ここでも振動をどう扱うのか分かりません。振動の自由同は、三原子直線型分子の場合、4つあるようですが、これらの振動は考慮しなくて良いのでしょうか。 Q4: 非直線分子の場合、回転の自由度は一つ増えて合計3になるそうですが、これは、先程、二原子分子の際に考慮に入れなかった回転、Z軸を回転軸とする回転、が無視できなくなった、ということでしょうか。すると、ΔU = 6/2 nRΔT となりそうですが、いかがでしょうか。 また、しつこいようですみませんが、振動はどうなのでしょうか。非直線分子の場合、振動の自由度は3あるそうですが、このことは内部エネルギー変化を考える場合に考慮に入れる必要はないのでしょうか? 以上となるのですが、私の理解があっているかどうかも含め、是非質問に回答頂ければ幸いです。どうか宜しくお願いします。 分かり難い記述があるようでしたら、訂正いたしますゆえ、どうか重ねて宜しくお願いします。

  • 気体分子の運動について

    以下の文章が正しいか否か、という問いです ---------------------- 理想気体では絶対温度が各気体分子の平均運動エネルギーに比例するので分子の質量が100倍になると分子の平均速度は1/10(十分の一)になる。 ---------------------- これは正しいのでしょうか?そもそも速度は変化するのでしょうか。 よろしくお願いします。

  • エントロピーと気体分子運動論

    エントロピーと気体分子運動論 いま学校の物理でエントロピーについて勉強しているんですが、 問題集の中に解き方がわからない問題があって困ってます。 その問題がこれです。 問題1:準静的な断熱変化ではエントロピーは変化しない。この事と温度T、体積Vのnモルの理想気体の エントロピーを求めよ。 問題2:一辺の長さがLの立方体の容器に入っている1モルの単原子分子理想気体について、分子運動論に関する 次の問いに答えよ。ただし、分子の質量をm、気体定数をR、アボガドロ数をNaとする。 (1)i番目の分子の速度を→ci=(ui,vi,wi)とする。この分子の単位時間にx軸に垂直な1つの壁に与える力積は mui2(2乗)/Lであることを証明せよ。 (2)分子の速さcの2乗の平均値<c2(2乗)>を用いて、気体の圧力pを表せ。 (3)理想気体の状態方程式を利用して、気体の内部エネルギーUを温度Tの関数として表せ。 教科書や参考書を見てもいまいち解き方がわからないので、解き方と答えを教えてほしいです。 よろしくお願いします。

  • 電子のとり得るエネルギーは連続的?

     原子や分子の軌道上の電子は、とり得るエネルギーの値は とびとびだが、金属内の自由電子のエネルギーはどんな値に もなり得ると聞きました。  このような時の電子は量子とは呼べないのでしょうか?

  • 分子軌道法について

    分子軌道法について質問します。授業で分子軌道法は原子軌道同士の数学的な組み合わせから分子軌道をつくることによって共有結合を表現する方法だと教わって、結合性軌道と反結合性軌道があるとならったんですが、これというのは、ある分子について、結合性軌道と反結合性軌道のパターンを考えて、それを数学的に混ぜ合わせて電子の状態を考えるとかんがえてもよいのですか。また、エネルギーの低い結合性分子から、電子がうまっていくそうですが窒素分子などで、σ^b(s)とσ^b(z)などが相互作用してエネルギーの準位(?)が変わったりするといわれ、混乱してしまいました。誰か教えてくれませんか。おねがいします。

  • ラザフォードの原子模型の矛盾の導出過程

    1:電子は絶えず円運動をすることから、電子の方向は常に変化 2:電子の方向の変化は、電子が加速度運動をしていることと同じ 3:電磁気学によれば、電子が加速度をもち運動するならば、電子は電磁波を放射する。 4:電子が電磁波を放射するため、電子のエネルギーは連続的に減少 5:電子のエネルギー減少により、電子の軌道半径も減少 6:電子は螺旋状に原子に接近し、やがて合体する これはラザフォードの原子模型と矛盾する。 と習いました。 しかし過程5の電子のエネルギー減少により、電子の軌道半径が減少する理由がわかりません。 私は電子の運動エネルギーについて考えました。 電子が軌道上から飛び出したり、原子核に吸い込まれたりしないために遠心力と静電力がつりあうことから導かれる式 mv^2/r=e^2/4πεr^2 を考え、 (電子の運動エネルギー)=mv^2/2=e^2/8πεr と導き、 電子のエネルギーの減少に伴い、軌道半径は大きくなると考えてしまいました。 間違ってるのはわかっていますが、そもそも 「電子が軌道上から飛び出したり、原子核に吸い込まれたりしないため」の条件を導入した時点で矛盾でしょうか? 理由を教えてください。お願いします。

  • 気体分子運動論の問題についてです。

    気体分子運動論の問題で解答を教えていただけませんでしょうか。 是非宜しくお願いいたします。 気体分子は体積なしで無秩序な運動をしている。 分子間相互作用も無く壁への衝突は完全弾性衝突 (運動量mu 運動エネルギー 1/2mu2←(この2は二乗です)は保存される) をしているとする。 長さLの立方体の中に質量m、速度uの分子が入っていると考える。 速度uのx成分をux、yをuy、z成分をuzとすると u2←(この2は二乗です)=_______と表せる。 といった問題ですがさっぱり分かりません。 申しわけ御座いませんが教えていただいても宜しいでしょうか。

  • エントロピーと気体分子運動論

    エントロピーと気体分子運動論 いま学校の物理でエントロピーについて勉強しているんですが、 問題集の中に解き方がわからない問題があって困ってます。 その問題がこれです。 問題1:準静的な断熱変化ではエントロピーは変化しない。この事と温度T、体積Vのnモルの 理想気体のエントロピーS(T,V)=CvlogT+nRlogV+C1(C1は任意の定数)      を用いて、TVr-1=一定を導け。ただし、rは比熱比である。 問題2:一辺の長さがLの立方体の容器に入っている1モルの単原子分子理想気体について、     分子運動論に関する次の問いに答えよ。ただし、分子の質量をm、気体定数をR、     アボガドロ数をNaとする。 (1)i番目の分子の速度を→ci=(ui,vi,wi)とする。この分子の単位時間にx軸に垂直な1つの壁に   与える力積はmui2(2乗)/Lであることを証明せよ。 (2)分子の速さcの2乗の平均値<c2(2乗)>を用いて、気体の圧力pを表せ。 (3)理想気体の状態方程式を利用して、気体の内部エネルギーUを温度Tの関数として表せ。 教科書や参考書を見てもいまいち解き方がわからないので、解き方と答えを教えてほしいです。 よろしくお願いします。