• ベストアンサー
  • すぐに回答を!

物理の積分がわからない。

物理の積分なんですが、a=加速度、v=速度、t=時刻を表すとして、 今a=dv/dt⇔dv=adtが成り立っているとします。この両辺を積分するとv(t)=at+C (Cは積分定数) になるみたいなんですが、これが理解できません・・。 不定積分Cはわかりますが、d/dtはtについて微分しろってサインですから、これをtについて積分すればなくなりますよね? すると右辺だけ積分したものはvになり、これと同じ処理をして等号を維持するにはaを積分して、加速度の積分=速度と習ったので実行すると、v=vになってしまいわけがわかりません・・・。 ご教授お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数687
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

仰っていることをフォローすると >すると右辺だけ積分したものはvになり、 a=dv/dt→∫(dv/dt)dt=∫dv=v >これと同じ処理をして等号を維持するにはaを積分して、加速度の積分=速度と習ったので実行すると、v=vになってしまい ∫adt=v ということだと思います。この展開は間違いではないですが、 >加速度の積分=速度 をただ単に適用しただけですから、v=vで当たり前となってしまいますね。∫adtの積分を実行しなくては。つまり今の場合加速度aは時間に依存しない定数(等加速度運動)を考えられますから∫adt=a∫dtと積分緒外に出せます。これを実行すると∫adt=a∫dt=atとなりますね(積分定数は省いています)。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • dx/dt=αxの積分

    dx/dt=αxの両辺を積分するという問題が解りません。 答えはx(t)=x(t=0)*exp(αt)です。 右辺はInαx=1/2αx^2+Cになると思ったのですが、間違っているようです。 t=0のときx=C(積分定数)になる意外わかりません。 どうしたらよいのでしょうか?

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 加速度、速度、距離、時間の関係について

    加速度、速度、距離、時間の関係式について教えて下さい。 本文では以下の記号を用います。 加速度:a 速度:v 距離:x 時間:t ・小学校の時などには「はじきの法則」で習う場合。 x = v・t  ・・・式(1)  (距離=速度×時間) ・高校物理で微分積分を用いる場合。  加速度の定義  a = dv/dt v = a・t + c (c:積分定数) ・・・式(2)  (速度=加速度×時間)    速度の定義 v = dx/dt ・・・式(3) x = v・t + c (c:積分定数) ・・・式(4)( = 式(1))  式(3)に式(2)を代入して積分すると、 a・t = dx/dt x = (1/2)・a・t^2 + c (c:積分定数) ・・・式(5)   しかし、「はじきの法則」(式(1))の印象が強いため、 式(1)に式(2)を代入した、下記の式と勘違いするのですが・・・・。 x = a・t^2 + c (c:積分定数) ・・・式(6)  式(6)が誤っている理由の解説をお願いします。  

その他の回答 (2)

  • 回答No.3

a=dv/dtは定義です。訳せば「加速度は速度の微分」。 これから直ちに、∫adt=vです。訳せば仰る「加速度の積分は速度」。 これら2つは積分定数を除いて同じなので、∫adt=vを2回使ってv=vとしてしまっているだけで、当然の結果ですね。 いかがでしょうか。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • mtaka2
  • ベストアンサー率73% (867/1179)

> 加速度の積分=速度と習った それを式で表そうとしてるところなんですから、勝手に置き換えちゃだめですよ。 「dv/dt=a」をtで積分すると、「v=∫a dt」 になります。 この式の意味は「a(加速度)を積分するとv(速度)になる」(「加速度の積分=速度」である)ということです。 この加速度aが定数の時は、右辺の積分が計算できて「v=at+C」になります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 1/y・dy/dtを積分すると、どうしてlogey+C’’になるのでしょうか?

    とある微分方程式の教科書で勉強していると、疑問に思った箇所がありまして(>_<) dy/dt = ry ・・・(1) を、積分するという話なのですが、これを積分した結果が、 logey = rt+C’ ・・・(2) になるそうなのです。 教科書の説明では、「未知関数yを微分したdy/dt(左辺)は、もとの未知関数yに定数を掛けたものになっている(右辺)」ので、「単に両辺を積分しても、右辺をどう積分していいのかわからない」そうなのです。 そこで、"変数分離法"なるものを利用して、左辺を未知関数yだけに、右辺を定数と変数tだけにするために、両辺をyで割り、その後に積分するという手法を採っていました。 そうすれば、左辺が、 ∫1/y・(dy/dt) dt = ∫dy/y = logey+C’’ ・・・(3) となり、右辺は、 ∫r dt = rt+C’’’  ・・・(4) となるので、両辺の積分定数をまとめてC’と置いて、結果として(2)になるそうなのです。 私がわからないのは、左辺の積分、(3)についてです。 分数の積分の公式に、 1/x →積分→ logex(=lnx) +C http://ja.wikipedia.org/wiki/%E3%83%8D%E3%82%A4%E3%83%94%E3%82%A2%E6%95%B0 http://sqa.scienceportal.jp/qa4962140.html というものがあるそうなので、1/yを積分した「∫1/y dt」は、「logey+C’’(定数)」になるのだと思います。 でも、今回の積分は「∫1/y・(dy/dt) dt」であり、「∫1/y・dt」とは違うので、logey+C’’になるのはおかしいと思うのです。 教科書が間違っている可能性は低いと思います。 どうしても理解できませんので、皆様のアドバイスをいただければ幸いです。 よろしくお願いします<m(__)m>

  • 積分

    次のような運動方程式を(0→Δt)で積分するとします。 m(dv/dt) = mg - cv^2  (ただし、cは定数、mは質量、gは重力加速度) 0→Δtで積分すると m(v(Δt)-v(0)) = mgΔt - c∫(0→Δt) v(t)^2dt v(Δt) = v(0) + gΔt - c/m∫(0→Δt) v(t)^2dt ここで、右辺の∫(0→Δt) v(t)^2dtの積分なのですが これを図で考える場合、横軸は t であることがわかるのですが 縦軸はなにに設定すればほいでしょうか?? また、v(t)^2というのは時刻tによるvの自乗ということでしょうか?? 初歩的な質問ですがよろしくお願いします。

  • 任意定数と積分定数は同じですか?

    不定積分や微分方程式に出てくるCを任意定数と呼んだり、 積分定数と呼んだりしていますが、これはどういう使い分け なのでしょうか?

  • e^-1/Tの積分

    現在、次のような微分方程式を解かなければならず、 悪戦苦闘しています。 dx/dT=k/a*exp(-E/RT)*(1-x) この式のうち、k,a,E,Rは定数で既知なので、無視すると、 dx/dT = exp(-1/T)*(1-x) という微分方程式になります。 私はこの式をxとTの変数分離型の微分方程式と捉えて次のように変形しました。 dx/(1-x) = exp(-1/T)dT これの両辺を積分するのですが、左辺は ln{1/(1-x)} という答えになるのがわかるのですが、右辺の ∫exp(-1/T)dT という積分が解けません。 どなたか教えていただけませんでしょうか。 よろしくお願いいたします。

  • エネルギー積分の意味

    エネルギー積分の意味  エネルギー積分を導くのに ∫Fdx = ∫m・a・dx ・・・・・・・・・・・・・・(1)    = ∫m・dv/dt・dx/dt・dt    = ∫m・dv/dt・v・dt・・・・・・・・・(2)    = ∫m・v・dv ・・・・・・・・・・・・・・(3)    = 1/2m・v^2+C のような解説が参考書に載っていました。置換積分を使えば形式的にこうなるのはわかるのですが、本来の(1)の積分の意味がよくわかりません。左辺は仕事を表すのは理解できますが、右辺は素直に解釈すれば「加速度を空間で積分?」ということになって、なぜそれが運動エネルギーにつながるかがどうもイメージが湧かないのです。イメージが湧かないといえば変形の途中で表れる(3)もそうで、数学的には単なる1次関数の積分ですが、物理的には「速度を速度で積分?」ということになりそうで、これまたよくわかりません。(3)は  d(v/2)^2/dt = v・dv/dt を(2)に代入すれば  ∫m・d(v/2)^2/dt・dt = 1/2m・v^2+C となり、(3)になるのを避けられますが単に数式をこね回しているだけのような気もします。  加速度を空間で積分、速度を速度で積分というのはどうすれば納得できるのでしょう。

  • 空気中の物体の落下

    空気の抵抗がある場合の、物体の落下速度を微分方程式で求めるさい、変数の変換がわからないので質問します。 運動速度がそれほど大きくないか、物体の大きさがそれほど大きくないときは、抵抗力はスピードに比例することが知られている。そこで質量mの物体を自由落下させ、時刻tにおける速度を下向きにvとしよう。この物体に働く力は、下向きの重力mgと、上向きの抵抗力kv(kは比例定数)である。よって、ニュートンの運動方程式 力=質量*加速度 により、mg-kv=m(dv/dt)・・・(1)という微分方程式がなりたつ。(1)を解いてみよう。変形して、 -k{v-(m/k)g}=m(dv/dt)そこでv-(m/k)g=u・・・(2)とおくと、ここがわからないところです。m(du/dt)=-kuになるのですが、なぜdv/dtがdu/dtになっているかが、あいまいです。自分では(2)の(m/k)gが定数で、両辺をtで微分すると左辺がdv/dt、 右辺が(d/dt)u=(d/du)u(du/dt)=1*(du/dt)なので、dv/dt=du/dtだと思いました。自分の考えが間違っていたら、訂正をおねがいします。

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 変数分離法で積分するときの積分変数について質問です。

    変数分離法で積分するときの積分変数について質問です。 例えば、dy/dx=yという式を変数分離法で解く時、両辺にdxをかけて、両辺をyで割って、1/ydy=dxという形にして両辺を積分します。このとき、教科書を見ると「∫1/ydy=∫dx+C」となっており、積分定数がついています。 積分の定義は「∫f(x)=F(x)+C」のように、積分を行ったものに積分定数がつくと習いました。しかし、変数分離の式「∫1/ydy=∫dx+C」では積分を行う前に積分定数がついています。これはなぜなのでしょうか?どなたかわかる方がいらっしゃいましたら教えてください。

  • 不定積分の問題

    不定積分の問題です。mを自然数とするとき、                n       (1)∫(cosx)^(2m-1)dx=Σa(k)(sinx)^k+C                k=1 (Cは積分定数) (a(k)のkは添え字です。) を満たす自然数nおよび実数a(k)(k=1,2,…,n)を求めよ。 (2)f(t)を多項式とするとき、 ∫f(cosx)dx-∫f(-cosx)dx=g(sinx)+C (Cは積分定数) を満たす多項式g(t)が存在することを示せ。 という問題です。 (1)はn=2m-1     a(k)=0(k=2.4.…n-1)        (k=1,3,…n)のときは式が複雑なので記載するのは控えます。 分からないのは(2)で解答には     n f(t)=Σb(k)t^k とおけるので、n=2L-1とおくと    k=0        L f(t)-f(-t)=Σ2b(2m-1)t^(2m-1)      m=1 となっているんですが、なぜ n=2L-1とおくのか、f(t)-f(-t)の右辺のΣのmが1→L なのかがわかりません。 宜しくお願いします。

  • 大学院入試の過去問(電磁気学)

    以下のURLに載せた問題の(3)が分かりません。 http://www.picamatic.com/view/9366447_DSC_0337/ 図1の画像↓ http://www.picamatic.com/view/9366453_DSC_0338/ とりあえず、(1) (2)で自分で出したこの答えは合ってますでしょうか? (1)求める電流Jは J= -(μ0a^2cosθ/R)(dH/dt) (2)求める力のモーメントNは N= -(μ0^2a^4cosθ/2R)H(dH/dt) ここで(3)も途中まで考えました。 剛体の運動方程式より I(dω/dt) = N ω=2v/a より (dv/dt ) = {(μ0)^2a^5(H0)^2cosθ/4IR} 今θは定数なので、両辺を時間tで積分すると、 v = {(μ0)^2a^5(H0)^2cosθ/4IR}t + C (C:積分定数) 私は、このvこそが求める初速度だと思うのですが、積分定数とtがでてくるので答えにはふさわしくないと思うのです。 一体どうすればよいのでしょうか?