• ベストアンサー

ローラン展開の位数

f(z) = e^x / ((z-1)(z-2)) はz=2を1位の極にもち、 f(z) = 1/(z^2(z-1)) はz=0を2位の極に持つらしいのですが、 例えばf(z) = 1/(z^2(z-1)) なのですが、z=0を考えるときに、 分母のz^2 以外のzに0を入れるイメージで定数化してしまい、 f(z) = - 1/z^2 という形を考えてz=0を2位の極と考えるのでしょうか? それともこういう考えは誤りで、ローラン展開をしっかりと やる必要があるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

>分母のz^2 以外のzに0を入れるイメージで定数化してしまい、 そういうことです.ただし定数じゃないので 定数にしてはいけませんが, 「定数化」は言葉のあやだと解釈しておきます. 一変数の複素関数は 極や零点が孤立してるので, その近傍で考えるときにはそれ以外の点は 挙動に影響しません. そのうち「芽」(germ)という概念を習うでしょうが これがその概念の基本になります. けど,最初のうちは練習もかねて計算しておくことをお勧めします.

Skynetwork
質問者

お礼

ありがとうございます。 読んだ資料に簡単に○○位とか説明されていたので、 ローラン展開しなくても、簡単に考えていいのかな? と思いました。 はい。複素関数論が着実に身につくまで、 きちんと展開もしてみたいとおもいます。 ありがとうございました。

関連するQ&A

専門家に質問してみよう