• ベストアンサー

衝突エネルギーの考え方を教えて下さい

ある番組で衝突エネルギーは速度の二乗に比例するとありました。 これが分かりません。 X=距離、t=時間、a=加速度 とすると初速度V0は0としたら X=1/2at^2 微分して つまりこれが速度vですよね。 更に微分して dv/dt=a 速度が二倍になれば加速度は単に2aになるだけ? いやそもそもdx/dt=atを二倍してはいけないのかもしれません。距離と時間が決まってからでないと微分できないのかも。とするとX=1/2at^2の時点でX=constとすると、速度が二倍になるという事は時間が1/2になる、つまりX=constなら加速度は二乗倍? エネルギー(J)=質量(kg)×加速度(m/S^2)×距離(m) つまりエネルギーも二乗倍? これでいいのでしょうか? そもそも衝突エネルギーとは何なのでしょうか? ある質量Aをもった物質が等速運動Vで動いたとしたら、もし人工衛星のように重力加速度や摩擦のロスが無いとしたら、そのエネルギーは 質量A(kg)×速度V(m/s) でもこれではエネルギーは単位Jになりません。そもそもエネルギーは相対評価なので、動く物質が何かに衝突し、その時の減速度(加速度)と減速した距離が分かれば衝突エネルギーは分かるのですが・・・ イマイチ分かりません。 等速運動の物質が壁に激突したら?速度の分だけエネルギーも二乗倍? 例えば踏み切りに止まっている車は質量×重力加速度のエネルギーがあります(単位:N)。そこに速度Vの質量Bの電車が衝突したら、車の質量エネルギーに対して電車の持つエネルギーはどのように表現するのでしょうか? (ここでは転がり係数による影響等は無視して、電車は等速運動をしていると仮定してください) 加速度が無い?つまり単に質量だけの差?そんな訳がないですよね。等速運動は地球に永久に落っこちると同じなので質量B×重力加速度でいいのか?それもおかしいですよね。

質問者が選んだベストアンサー

  • ベストアンサー
  • ency
  • ベストアンサー率39% (93/238)
回答No.1

その番組では、おそらく「衝突エネルギー」=「運動エネルギー」としたのだと思います。 まぁ、テレビ番組の場合、わかりやすさを重視することが多いでしょうから、その分は差し引いて観る側で解釈するしかないでしょう。 ちなみに、運動エネルギーは  E=1/2 mv^2 で定義されますので、「速度の2乗に比例する」とも一致します。 ご質問の他の部分については、いろいろと混乱されているようですのでもう少しご自身でお調べになって、内容を整理したうえで再度ご質問してほしいのですがいかがでしょうか。 話が発散しすぎていて、どの部分のどのように回答をすればよいのかが判断できません。 ご参考までに、関連しそうな Wikipedia のページを載せておきます。 「力」 http://ja.wikipedia.org/wiki/%E5%8A%9B 「仕事」 http://ja.wikipedia.org/wiki/%E4%BB%95%E4%BA%8B_%28%E7%89%A9%E7%90%86%E5%AD%A6%29 「エネルギー」 http://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC 「運動量」 http://ja.wikipedia.org/wiki/%E9%81%8B%E5%8B%95%E9%87%8F 「力積」 http://ja.wikipedia.org/wiki/%E5%8A%9B%E7%A9%8D 「エネルギー保存の法則」 http://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC%E4%BF%9D%E5%AD%98%E3%81%AE%E6%B3%95%E5%89%87 「運動量保存の法則」 http://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC%E4%BF%9D%E5%AD%98%E3%81%AE%E6%B3%95%E5%89%87 別に「これらのページで調べろ」といっているのではありません。 ほかにもわかりやすい解説をされているページも多数存在していますので、そちらでお調べになっても結構です。 ちなみに、ご質問の中にある「質量×速度」は「運動量」ですので、「エネルギー」として議論することはできません。 また、「質量×重力加速度」は「重力」つまり「力」ですので、こちらも「エネルギー」として議論することはできません。 ご参考まで。

noname#116887
質問者

お礼

大変ありがとうございました。 勉強になりました。 運動方程式から運動エネルギーと位置エネルギーが導かれるのですね。 力積も良く分かりました。

noname#116887
質問者

補足

申し訳ありません。 実は運動エネルギーは分かったのですが・・ 単純に踏み切りに何かが止まっていたとします。それに列車が衝突したとすると、何倍の力が止まっていたものにかかるのか? という安易な気持ちで考え初めたのですが・・ どうにも比較はできないのでしょうか? 運動エネルギーはJですが、止まっていた物はNでしか表現できない・・ 何倍の力とかは簡単には言えないのですよね?

その他の回答 (3)

  • ency
  • ベストアンサー率39% (93/238)
回答No.4

ANo1 encyです。 エネルギーは「仕事をする能力」ですので、位置エネルギーは「その位置にいるだけで一定の仕事をすることができる能力」だといえます。 「その位置にいるだけ」というところがポイントで、経路によりませんし、そこでの速度にもよりません。 Wikipedia「位置エネルギー」 http://ja.wikipedia.org/wiki/%E4%BD%8D%E7%BD%AE%E3%82%A8%E3%83%8D%E3%83%AB%E3%82%AE%E3%83%BC で、位置エネルギーが仕事をする (仕事をされる) には、物体がその位置を変える必要があります。 つまり、「位置の差」の分だけ仕事をする (仕事をされる) ことになるんです。 ちなみに、位置エネルギーは重力やバネの弾性力なんかが作用する物体が持つエネルギーです。 重力やバネの弾性力のことを「保存力」といいます。 言い換えれば、保存力が作用している物体は位置エネルギーを持つことになります。 重力による位置エネルギーは、「高さ」という位置によって決まります。 バネの弾性力による位置エネルギーは、「つりあいの位置からの伸び」という位置によって決まります。 どちらの位置エネルギーもそれぞれの「位置の差」によって外部に仕事をしたり、外部から仕事をされたりするのです。 このように、位置エネルギーは「位置の差」が重要なのであって、絶対的な位置そのものには意味はないんです。 # 質問者さんご自身がおっしゃられている相対評価という話に通じるところだと思います。 で、ご質問の踏み切りの話になりますが、この場合作用している保存力は重力のみになります。 重力による位置エネルギーは高さの変化によってのみ仕事をしますので、今回の例では水平に移動していると仮定して、位置エネルギーの変化は0、つまり位置エネルギーによる仕事は0とします。 力学的エネルギーは、運動エネルギー+位置エネルギーと定義されます。 今回の場合、位置エネルギー=0ですので、力学的エネルギーは運動エネルギーのみを考えればよいことになります。 そして、物体の運動を考える場合、「どの系」で考えるかが重要になります。 系のとり方は任意ですが、今回の場合は「電車+車」という系で考えるのがわかりやすいと思います。 つまり、「電車のもつ力学的エネルギー+車のもつ力学的エネルギー」全体を考えるわけです。  電車のもつ力学的エネルギー=電車の運動エネルギー  車のもつ力学的エネルギー=0 (運動エネルギー=0のため) ですから、考えている系の全力学的エネルギーは「電車の運動エネルギー」となります。 そして、衝突前後について「力学的エネルギー保存の法則」を考えれば良いわけです。 衝突後電車がブレーキなしで停止し、電車の変形0で、かつ衝突前後で力学的エネルギーが保存されると仮定すると、 「電車の運動エネルギー」=「車を変形させるエネルギー」 となるわけです。 まぁ、そうとう重い大型車に、相当硬い電車が衝突した場合ならありえるかな。 ちなみに、物体を変形させるエネルギーも位置エネルギーの一種ですが、細かい説明は長くなるので割愛します。 # 質点の運動だけでは見えないエネルギーですね。 あと実際には、衝突時に発生する音や熱によるエネルギー損失があるでしょうから、車を変形させるエネルギーは電車の運動エネルギーよりもその損失分だけ小さくなるはずです。 …かなり長くなってしまいましたが、こんな感じでいかがでしょうか?

noname#116887
質問者

お礼

ありがとうございます。 系で考えるという事、良く分かりましたが、 >電車のもつ力学的エネルギー=電車の運動エネルギー >車のもつ力学的エネルギー=0 (運動エネルギー=0のため) としますと、車のエネルギーに対して電車は何倍かが出ませんよね・・ エネルギーでなく力なら出るのでしょうか? 転がり係数を使って重力加速度を極小と考えてみると、車の重力加速度による位置エネルギーは車の質量×9.8=F(N) 申し訳ございません。下の方のお礼のコピーになってしまうのですが、F(N)に移動距離L(m)をかけたものが仕事W(J)ですよね。 単純に考えると、例えば車を動かす力Fは F=m(kg)×(a+gμ)ここでa:加速度、g:重力加速度、μ:転がり係数 タイヤの転がり係数が小さいので重力加速度が小さくなり、摩擦が軽減するから走れるのですよね? 電車も同じですよね?力Fがある。 これが等速運動をしている時にどう考えればいいのでしょうか? まず加速度aは等速運動で定義できるのか? F(N)×L(m)=W(J)。しかし移動距離は等速運動・・ しかしエネルギーの定義から等速運動のW(J)=(1/2)×m(g)×(v(m/s))^2ですよね。 イマイチ力とエネルギーの関係が分からないのですが、運動方程式F=m×(dv/dt)ということは、衝突して1秒で速度が0になれば速度v=加速度aとなり、衝突した対象に与える力はm×v?この時v=a(m/s^2) 0.5秒なら二倍 つまり一瞬で止まるということは無限大になってしまうので、1秒で止まると仮定してと考えればおおよその近似ができるのでしょうか? おそらく衝突した場合、相手がまったく影響しないとは考えられなく、凹んだり移動したり・・ ただ簡単に近似的というよりおおまかに考えるとこのような感じになるのでしょうか?

  • b_bb
  • ベストアンサー率23% (4/17)
回答No.3

#2です >地球中心を原点としたら車はmgR R=地球の半径の位置エネルギーをもっていて、電車もmgRの位置エネルギーを持っていますが、これに運動エネルギーを加えたらおかしいですよね? おかしくないですよ。(地面原点で速度Vの電車のエネルギーはE=mg*0+mvv/2 もし、地下100mを原点としていたらE=mg*100+mvv/2です。) たとえば地面が急になくなった場合電車はどんどん加速していきしまいに(原点についた時)すべての位置エネルギーが運動エネルギーに代わりますから。 エネルギーはスカラー量なので自由に足し算引き算ができます。 ただ実際にそのエネルギーすべて取り出せるかどうかは別の話になりますね。(考えるときはすべて取り出せるような位置に原点をとるわけです。) たとえばアインシュタインの相対性理論で、E=mc^2 (C=光速)というものがあります。 つまり、われわれは質量をもってる限り、それに高速の二乗をかけた膨大なエネルギーであるとみることができます。 が、核分裂とか起こさないと取り出せすことはできないので、そもそもそんなこと考えなくてよい通常は無視します。これがエネルギーは相対的に決まるということの一例ですね。 ところで、説明する上でどの程度物理の知識があるのかが重要になってまいりますので、まだ何かご質問がある場合は、年齢などをお書きいただけると参考にできます。

noname#116887
質問者

お礼

ありがとうございます。 当方32歳、調査職です。 エネルギーは足す事ができるのですね・・ 力F(N)に移動距離L(m)をかけたものが仕事W(J)ですよね。 単純に考えると、例えば車を動かす力Fは F=m(kg)×(a+gμ)ここでa:加速度、g:重力加速度、μ:転がり係数 タイヤの転がり係数が小さいので重力加速度が小さくなり、摩擦が軽減するから走れるのですよね? 電車も同じですよね?力Fがある。 これが等速運動をしている時にどう考えればいいのでしょうか? まず加速度aは等速運動で定義できるのか? F(N)×L(m)=W(J)。しかし移動距離は等速運動・・ しかしエネルギーの定義から等速運動のW(J)=(1/2)×m(g)×(v(m/s))^2ですよね。 イマイチ力とエネルギーの関係が分からないのですが、運動方程式F=m×(dv/dt)ということは、衝突して1秒で速度が0になれば速度v=加速度aとなり、衝突した対象に与える力はm×v?この時v=a(m/s^2) 0.5秒なら二倍 つまり一瞬で止まるということは無限大になってしまうので、1秒で止まると仮定してと考えればおおよその近似ができるのでしょうか? おそらく衝突した場合、相手がまったく影響しないとは考えられなく、凹んだり移動したり・・ ただ簡単に近似的というよりおおまかに考えるとこのような感じになるのでしょうか?

  • b_bb
  • ベストアンサー率23% (4/17)
回答No.2

#1さんのおっしゃっていることで間違いないので、混乱してそうな部分を指摘します。 エネルギーと運動量と力に混乱が見られてますね。 単位はJ(kgmm/ss) と kgm/sと N(kgm/ss)なので全くの別物です。 (運動量の時間変化が力であるという原理(第二法則)と、その式の両辺を積分して定義したのがエネルギーです。) エネルギーには方向がないが(スカラー量)絶対値を取るのでエネルギーを議論する上でもベクトル量を扱ってます。 たとえば、x方向速度が2倍になった場合でも他の方向に速度を持つ場合エネルギーは四倍になりません V=√(Vx^2+Vy^2+Vz^2)だとした場合、Vxを二倍してもVが二倍にならないからです。 >>例えば踏み切りに止まっている車は質量×重力加速度のエネルギーがあります(単位:N)。そこに速度Vの質量Bの電車が衝突したら、車の質量エネルギーに対して電車の持つエネルギーはどのように表現するのでしょうか? ご自身でもおっしゃっていますが、エネルギーは相対評価です。 自分がどれを基準にするか(どういう座標系で議論するか)決められるからです。 この場合地球中心を原点としたら車はmgR R=地球の半径の位置エネルギーをもっていて、電車もmgRの位置エネルギーを持っています(運動エネルギーmvv/2ももっている)。 踏切を原点としたら車はmg*0=0の位置エネルギーをもっていて、電車も0の位置エネルギーを持っていることになります。 ちなみに、衝突を運動エネルギーで議論するのはいささか問題があります。 二つの物体が衝突した時に伝わるのは力であると考えて場合、衝突がゆっくりと進めば(相対速度が限りなく0)二つとも超高速で動いていても衝撃は全くないからです。 #1さんの力積あたりで出てくる話ですね。

noname#116887
質問者

お礼

ありがとうございます。 相対評価なのですよね・・ 実は単純に踏み切りに車が止まっていた場合、列車の衝突は何倍の力がかかるのか?という安易な疑問からだったのですが・・ 踏み切りを原点としたら車の位置エネルギーは0ですよね・・ 地球中心を原点としたら車はmgR R=地球の半径の位置エネルギーをもっていて、電車もmgRの位置エネルギーを持っていますが、これに運動エネルギーを加えたらおかしいですよね? うーん・・

関連するQ&A