- 締切済み
- すぐに回答を!
共分散
- みんなの回答 (2)
- 専門家の回答
関連するQ&A
- 確率変数の分布の問題について質問です
確率変数の分布の問題について質問です 私は高校生で、経済学に興味があり、統計学を自習しておりますがわからない問題があるので質問させていただきます 1、ポアソン分布(f(x)=(e^-λ*λ^χ)/χ! χ=0,1、2・・・)の積率母関数がe^{λ(e^t-1)}となることを示し平均と分散をもとめよ 2(1)連続確率変数χが (f=(χ)e^(-χ) χ>0のとき ) (=0 xは0以下のとき ) なる密度関数をもつ時y=-2x+5で定義されるyの密度関数を求めよ (2)χが正規分布N(μ、σ^2)に従う時χ=logeyなるy すなわちy=e^χは次の密度関数を持つことを証明せよ。 (f(y)={e^{-(logy-μ)^2/yσ√(2π)}}/{yσ√(2π)} y>0のとき ( =0その他のとき またyの平均はexp(μ+(σ^2)/2) 分散はexp(2μ+σ^2)[exp(σ^2)-1]となることを導け
- 締切済み
- 数学・算数
- 以下の問題をお願いします
さっぱりわからないのでどうか教えてください。 (1)確率変数Xが標準正規分布に従うとき、|X|の密度関数を求めよ (2)確率変数Y=log(X)が平均μ、分散σ^2に従うとき、Xの密度関数、平均、分散を求めよ (3)確率変数Xの平均が存在するとき、 lim(x→∞)[x(1-F(x))]=0 ただし、F(x)はXの分布関数
- 締切済み
- 数学・算数
- 確率統計の問題が分かりません
この問題が分かりません途中経過が有ると助かりますお願いします。 問題5 関数 f (x,y) =⎧c : x^2 + y^2 ≤1 ⎩0:1<x^2 +y^2 が確率密度関数となるようにcの値を定めよ。 (10点) この立体がどんな形をしているのかを考える(柱になる)。 問題6. 離散変数 x,yに対する確率関数が f (x,y)である。 A = ∑∑xf (x,y)、B=∑∑yf(x,y)、C=∑∑x^2 f(x,y)、D=∑∑y^2 f(x,y)、E =∑∑xyf(x,y)とする時、x,yの共分散σxyを求めよ。(10点) 離散変数と連続変数の違いは∑ か ∫ かの違い。 連続変数の共分散の求め方の式の ∫ を∑ に置き換えてみる。
- ベストアンサー
- 数学・算数
- 確率統計の問題です!
連続型確率変数Xの確率密度関数が f(x)= a-x (0<x<a) , 0 (その他) であるとき、次の問いに答えよ。 1. aを求めよ 2. Xの期待値と分散を求めよ 3. Y=X^2とするとき、Yの確率密度関数を求めよ 1. ∫0→a f(x)dx=1 と 0<x<a からa=√a と求めることができました。 2. E(X)=∫0→√2 xf(x)dx から√2/3 E(X^2)=∫0→√2 x^2f(x)dx から1/3より V(X)=E(X^2)-{E(X)}^2=1/9 と求めることができました。 3. どうやって求めるかわかりません。E(X^2)を使って求めるのでしょうか?
- 締切済み
- 数学・算数
- 統計論の問題です
何度も申し訳ありません。かなり重たい課題でよく分かりません。 以前の投稿とかぶる部分もあります。 本当に申し訳ありませんが、お力添えをお願いします。 (問題) 正規分布に従う確率変数XとYは、共に分散は1であるが、Xの平均値は-1、Yの平均値は1である。 (1)XとYが互いに独立であるとき、XとYの2次元確率密度関数p(x,y)を示せ. (2)XとYが互いに独立であるとき、XYの平均値E(XY)、分散V(XY)を求めよ. (3)互いに独立であるX、Yから作られる確率変数Z≡X/√2+√2Yで定義するとき、Zの確率密度関数pz(z)を求め、その概形をグラフに描け. (4)XとYが独立ではなく、E(XY)=1/2であるとき、X+Yの平均値E(X+Y)と分散V(X+Y)を求めよ. (5)(3)の確率変数Zの関数Z-1/√2のn(=0,1,2,3,・・・)次モーメントMn≡E((Z-1/√2)^n)を求めよ. 以上5問です。 授業でぜんぜんやっていないところで、平均と分散から確率密度関数を求める問題((1)のような問題)や独立でないときの平均や分散の求め方((4)のような問題)は教科書を見ても分かりませんでした。実際、このような問題形式で確率密度関数などは求められるものでしょうか。本当に初心者なので、申し訳ありませんがお力添えお願いします。
- 締切済み
- 数学・算数
質問者からの補足
二つの確率変数(X,Y)に対してμx=E(X),μy=E(Y)とおくとき Cov(X,Y)=E[(X-μx)(Y-μy)]=E[(X-E(X))(Y-E(Y))] をXとYの共分散と呼ぶ 全く意味がわかりません