• 締切済み

広義積分

∫dx/x^2+3の上端が∞で下端が3の値を求めよ 先ほども質問しましたが、x=√3tantで置換して、 dx=√3dt/cos^2tまでできましたが、その後が納得できません。 アドバイスお願いします。

みんなの回答

回答No.1

dx=(√3)dt/(cost)^2 x^2+3=3(tant)^2+3=3{1+(tant)^2} =3{1 +(sint)^2/(cost)^2} =3{(cost)^2+(sint)^2}/(cost)^2 =3/(cost)^2 なので、 ∫[3→∞] dx/(x^2+3) =∫[π/3→π/2]{(√3)dt/(cost)^2}{(cost)^2/3} ={(√3)/3}∫[π/3→π/2]dt ={(√3)/3}(π/2-π/3) =(π√3)/18 となります

tommasumo
質問者

お礼

ありがとうございました。 謎は解けました。

関連するQ&A

  • 広義積分の問題

    ∫dx/x^2+3の上端が∞で下端が3の値を求めよ 最初の一歩が踏み出せません。アドバイスをお願いします。

  • 偶関数、奇関数の定積分の式変形について

    X=-tとおくと、dx=(-1)dt Xが-a→0のとき、tはa→0 下端-a、上端0の定積分∫f(x)dxは =下端0、上端aの定積分∫f(t)dtと変形できる。 ここまでは分かるのですが、そのあと =下端0、上端aの定積分∫f(x)dxと変形できてしまう理由が分かりません。 tの関数からxの関数に戻したとき、上端と下端の値も変わってしまい、もとの式にもどってしまいます。

  • 積分の問題です。先ほども質問させてもらいましたが、

    積分の問題です。先ほども質問させてもらいましたが、 自分なりに解いた答えと、皆さんの答えが違っていました。 どこが違うのか、考え方が違うのか教えてください。 ※パソコンでの書き方が慣れていないため、かっこの付け方や  途中式で見ずらいものがあると思います。お許しください。 次の定積分を求めよ。  (1)∫(0~π/2)sin^2xcos^3xdx    =∫(0~π/2)sin^2(1-sin^2)cosxdx    =∫(0~π/2)(sin^2-sin^4)cosxdx    =∫(0~π/2)sin^2(cosx)-sin^4(cosx)dx    =[(1/3)sin^3x-(1/5)sin^5x](0~π/2)    =(1/3-1/5)-0    =2/15  (2)∫(0~1)xtan^-1xdx    t=tan^-1xとおくとx:0→1のときt:0→π/4     x=tant dx=1/(cos^2t)dt     ∫(0~1)xtan^-1xdx     =∫(0~π/4)tant/cos^2tdt     =∫(0~π/4)(sint/cost)(1/cos^2t)dt     =∫(0~π/4)sint/cos^3tdt     =∫(0~π/4)(cos^-3t)(sint)dt     =[(1/2)cos^-2(t)](0~π/4)     =(1/2)(1/(1/√2)^2)-(1/2)(1/(1^2)     =1-(1/2)=1/2 と解きました。長くなりましたが、よろしくお願いします。

  • 積分計算

    積分の計算をしたのですが 解答と違うのでどこが違うか指摘をお願いします 問題 ∫dx/√((x-1)^2-1)  (範囲は2から4)・・(1) 解答では (1)=log|x-1+√(x(x-2))| となるので log|x-1+√(x(x-2))|=log(3+2√2) そして自分の回答 x-1=1/costとおいて tの範囲が0からα(ただしcosα=1/3 sinα=2√2/3) dx=(tant/cost)dt (x-1)^2-1=(1/cos^2t)-1=tan^2t よって ∫(1/tant)(tant/cost)dt=∫(1/cost)dt=∫(cost/(1-sin^2t))dt ここで sint=uとして uの範囲が0から2√2/3 du=costdt ∫(1/1-u^2)du=1/2∫(1/1+u^2)+(1/1-u^2)du =1/2log(1+u)(1-u) =1/2log1/9 となってしまします よろしくお願いします

  • 定積分と微分の関係?

    F(x)=∫f(t)dt (定積分の区間は下端a、上端x)⇔F'(x)=f(x)かつF(a)=0 を証明する。        (→)d/dx・∫f(t)dt (定積分の区間は下端a、上端x)=f(x) かつF(a)=∫f(t)dt (定積分の区間は下端a、上端a)=0  であるから容易に証明される。 (←)F'(x)=f(x)であるからF(x)は不定積分の1つであり   ∫f(x)dx=F(x)+C(Cは積分定数) またF(a)=0であるから  ∫f(t)dt (定積分の区間は下端a、上端x)=[F(t)] (定積分の区間は下端a、上端x)=F(x)-F(a)=F(x) よって証明された。  とかいてあったのですがどういう意味なのかわからないんです!!  教えてください!!

  • 不定積分と定積分を求めよ

    この問題教えてください。 不定積分と定積分を求めよ。(2)は上端にπ/6下端に0です。 (1)∫cos3xcos^(2)x dx (2)∫(π/6) cos^(2)x dx (0) (3)∫xe^(x2) dx (4) ∫cos^(2)xsinx dx (5) ∫1/6-2x dx

  • 定積分

    以下の問題教えてください 定積分の値を求めよ 1.∫[π/2] sin^(7)xcos^(2)x dx 上端にπ/2 下端に0です [0] 2.∫[2π] sin^(6)x/4 dx      上端に2π 下端に0です [0]

  • 置換積分による定積分

    お世話になっております。数学3の定積分からの質問です。 教科書の基本的な説明の理解でうろうろしているのですが、その中で些細な疑問があります。 置換積分による不定積分を求める方法と置換積分による定積分を求める方法の考え方です。 これらは基本的には同じことですよね? 教科書では、xをtやらuやらで置換したときに、xとt(u)の対応を考えてから、t(u)のときの下端と上端を積分記号に与えていますが、 例えば、始めは下端と上端を考えないf(x)の不定積分F(x)を置換で求めてから、xの下端上端を考えて定積分の値を求めるのも方法としては間違いでは無いと思うのですが、如何なものでしょうか。 置換積分法による定積分は、煩雑さが解消できるというメリットがあるのかなぁという印象です。 本当に些細な疑問です。ちょこっとコメント下されば幸いです。

  • 広義積分

    こんばんは。工学部の大学一回生です。 広義積分について質問します。 ∫6x^2/(1+x^3)^3dx 範囲は0から∞です。 x^3=t とおいて dx=dt/3x^2 という感じで解いたら、 ∫2t/(1+t)^3dt 範囲は0から∞です。 となりました。 ここからどのように解けばわかりません。 ココからの解き方あるいは、間違ってたら教えてください。

  • 定積分の計算について

    ∫(2x^2+x)dx{下端-2で上端3)-∫(2x^2+x)dx{下端2で上端3} =∫(2x^2+x)dx{下端-2で上端3)+∫(2x^2+x)dx{下端3で上端2 } =∫(2x^2+x)dx{下端-2で上端2)というふに式変形する事ができますか?良くわからないので教えてください。お願いします