• ベストアンサー

極限の“=”の順番について

関数 f(x) について、x→∞ のとき、lim f(x)=α となったとします。 計算の過程を書くと、下のようになりますよね。 lim f(x)=式変形=式変形=・・・=α (x→∞) 『このとき等号は、右から左へ順に成立する』 と参考書に書いてあったのですが、理由がわからないんです。 どうしてなのでしょうか。 ご存知の方、教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • ringouri
  • ベストアンサー率37% (76/201)
回答No.2

普通、 f(x) = 式1 = 式2 = ・・・・ = 式n → α (x → ∞) というように書くのですが.... いずれにしても、この形を見れば、「右から左へ」の意味が分かります。 式nがαに収束する⇒式n = 式(n-1)だから 式(n-1)もαに収束する⇒・・・・ 元の式f(x)もαに収束する。 という順番です。

9075qong
質問者

お礼

回答ありがとうございます。 これで、もんもんとした悩みが解決です。 テストでは問われない内容だけに余計に気になってて・・・。 今夜はぐっすり眠れそうです。

その他の回答 (1)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>『このとき等号は、右から左へ順に成立する』 何が言いたいのかまったくわからん。 具体的な問題文とその解答を挙げると誰かアドバイスしてくれるかも。

9075qong
質問者

お礼

わかりにくい文章でごめんなさい。 No.2 の方が回答を寄せてくれました。 そこで私の疑問は解決しました。 よって補足をせずに、質問を締め切ることとします。 貴重なご意見ありがとうございました。

関連するQ&A

  • 不定形の極限値

    不定形の極限値の範囲で下の2つの定理の証明がわからなくて困っています。 どなたか解説をお願いします。 定理1 f(x),g(x)はある開区間(a,∞)で微分可能な関数とする。 もし、lim(x→∞)f(x)=lim(x→∞)g(x)=0が成立し、 極限 lim(x→∞) f'(x)/g'(x) = L が存在すれば lim(x→∞) f(x)/g(x) = L が成り立つ。 定理2 f(x),g(x)はaを含むある開区間で微分可能な関数とする。 もし、lim(x→a)f(x)=lim(x→a)g(x)=∞が成立し、 極限 lim(x→a) f'(x)/g'(x) = L が存在すれば lim(x→a) f(x)/g(x) = L が成り立つ。   

  • 微分・極限値

    計算について質問です よろしくお願いします /は普通の分数 /は普通の分数の下にまた分子がくるという意味です 1. 次の関数f(x)を定義によって微分しなさい。 f(x)=1/x f´(x)=lim h →0 f(x+h)-f(x) =lim h →0 1/x+h-1/x /h =lim h →0 1/h{x-(x+h)/x(x+h)} =lim h →0 -1/x(x+h) =-1/xの二乗 このlim h →0 1/x+h-1/x /hのとき なぜlim h →0 1/x+hではなく、hもxと一緒になって分子に移動しているのかがわかりません。 その計算方法を教えてください よろしくおねがいします。

  • 数学極限の問題

    lim [x→-π/2] (cos2x)/(x+π/2) lim [x→1] {(x+1)/(x-1)}^(x-1) lim [x→e] e(logx-1)/x-e すべて平行移動を用いて[x→0]にし、それぞれ lim -(cos2x)/x lim {(x+2)/x}^x lim e{log(x+e)-1}/x とするところまではできたのですが、この後の処理の仕方がよくわかりません。 答えはそれぞれ 1 e^2 1 だと書いてありました。 この答えに行き着くまでの過程を教えて頂けないでしょうか? 参考書を頼りに自分で色々な式変形をしてみたのですが、どうにも答えの数値にならず困っております。 何方か宜しくお願いします。

  • 極限値

    f(x)=e^(-1/2)/x^2 について、 lim[x→+0] f(x) が求まりません。 私はまず対数を取って、  logf(x)=-(2xlogx+1)/x ・・・ (1) 次にロピタルの定理より、  lim[x→+0] logf(x)=lim[x→+0] -2(logx+1)=+∞ ・・・ (2)  ∴lim[x→+0] f(x)=e^(+∞)=+∞ このように解きました。 しかし、(1)式によれば、lim[x→+0] xlogx=0 より、lim[x→+0] logf(x)=-∞ 、 lim[x→+0] f(x) = e^(-∞) = 0 となってもよさそうなものです。(但しこの場合は(1)式右辺の分母について、lim[x→+0] x=0 より、数学的に正しくないと思われる) 実際にy=f(x)をコンピュータでプロットした結果は、lim[x→+0] f(x) = e^(-∞) = 0 となりましたが、(1)式からロピタルの定理によって(2)式を導出することになんらかの問題があったのでしょうか? 繰り返しますが、(1)式からロピタルの定理を用いて lim[x→+0] f(x) を求められない問題について、質問致します。

  • 不定形の極限について

    お世話になっております。 分数関数の極限についての質問です。 具体的には f(x)=x^2/(x-1) のグラフを描く教科書の例題にあるような基本的なものです。 グラフを描くために、漸近線の方程式を求めるのは必要な過程と思います。 上の例題の場合、 関数f(x)の定義域x≠1に対して、x→1 の時のf(x)の極限値を求めるのに、教科書でははしょって即座に lim[x→1+0]f(x)=∞ としてますが、実際計算で有理化とかしても、「定数/0」の形になってしまうので、極限値の性質 lim[x→a]{f(x)・g(x)}=αβ (但し、lim[x→a]f(x)=α、lim[x→a]g(x)=βが前提) を利用して、g(x)=x^2、 h(x)=1/(x-1) みたいに考えたら、前者のx→1の両側極限は容易に求められますし、後者はグラフから求められます。 結果、 lim[x→1+0]f(x)=1・∞=∞ lim[x→1-0]f(x)=1・(-∞)=-∞ とようやく教科書の記述に至ったのですが、実際こんな面倒な手順でないと導けないものでしょうか? ロピタルの定理は、一応概要には触れましたが、不完全なのでご回答にはお使い下さらないでいただきたいです。 ご助言いただけると有り難いです。宜しくお願い致します。

  • 極限

    極限f(x)はxの関数としてください。 |f(x)|<1/(2x+3)のとき、lim(x→∞)1/(2x+3)=0だから、lim(x→∞)f(x)=0とあるのですが、ー1/(2x+3)<f(x)<1/(2x+3)と考えているのでしょうか? それとも、なにか他の考え方があれば、教えてください。

  • 極限計算について

    極限の計算において x→aのときにf(x)→A, g(x)→Bであるとする。 このとき f(x)g(x)→AB が成り立つ。 とあったのですが、そうだとしたら次の計算は成り立ちますか? lim[n→∞]1/(2n)×1/nΣ[上:n 下:k=1]{f(k/n)}^2 lim[n→∞]1/(2n)×∫(0→1){f(x)}^2dx=0 まず2段目の式についてはΣの方だけ区分求積しておいて1/(2n)だけ極限を計算していないのですが、こういう書き方はしてもよいのでしょうか?かといって 1/∞×∫(0→1){f(x)}^2dx=0 として∞なんかを計算式に書くのもダメですよね? まあこれは書き方の問題に過ぎないのですが... そこで極限においてですが、「和」も「差」も「積」も一つずつ別々に計算してそれを最後に足したり引いたりかけたりしてよいのでしょうか?例えば h(x)+I(x)+j(x)→α+β+γ(α,β,γはそれぞれの極限値とします) というのは成り立ちますか?もちろん足したり引いたりかけたりする項がn個の場合は成り立たないと思いますが。 あと上で書いたA,Bという極限値ですが有限値という制限がありました。当たり前だと思うのですが→0ももちろん有限値ですよね? 参考書に書いてあるようなレベルの質問ですが、ちょっと自分としては曖昧な点があるので一度アドバイス頂いた方が良いと思い質問させていただきました。よろしくお願いします!

  • 極限値について

    fとgは連続関数で、 f(2)=1、lim x→2 [f(x)+4g(x)]=13 となるき、 g(2)とlim x→2 g(x)の値を求める問題で、答えは何れも3になってるのですが、よく掴めません。どなたか簡単に説明して頂けますか?

  • 極限の性質1

    ある関数 f(x)があって, lim  f(x) = e x → ∞ の時, lim  f(x) = e x → -∞ とは限らないと思うんですが,間違ってますか?

  • 微分の極限値(注:初心者)

    高校数学の本で微分の極限値の説明で、 lim(x→1) x^2 - 1/x-1=(x+1)(x-1)/x-1=lim(x→1) x+1=2 という式が書いてるのですが、これは結局 f(x)=x+1 という1次関数のlim(x→1)の場合のf(x)の極限値の事ですが、なぜ最初わざわざ分数で表して約分でx+1に変形してからxに1を代入するような説明なんでしょうか?最初の分数の状態でxに1を代入すれば分母も分子も0になり、そこで式が終わってしまうという事が言いたいだけなんでしょうか?なぜこういう説明があるのかが理解できません。微分係数のf'(x)=f(x+h)-f(x)/h の式でhにいきなり0を代入したらそこで式が終わってしまうという事を説明するためなのでしょうか?この文の必要性がいまいち分かりません。わかりにくい質問かもしれませんが引っかかるので、質問の真意がわかる人お願いします。ようするに、なぜ最初 x^2 - 1/x-1=(x+1)(x-1)/x-1 という分数で表してその後約分で x+1 の形に持ってくるような書き方なのかが知りたいんです。