• ベストアンサー

区分的に連続な関数について

自分では不連続な点もあるけど、発散はしない関数と思っているのですが、区分的に連続な関数というのは一般的にどのようなものなのですか?よく理解できていなくてすみません。 あと、区分的に連続な関数f(x)が存在するとき導関数f'(x)が区分的連続ではない関数というのはありますか?

質問者が選んだベストアンサー

  • ベストアンサー
  • oyaoya65
  • ベストアンサー率48% (846/1728)
回答No.1

>区分的に連続な関数 簡単に言えば「f(x)が、xの不連続点を除いて関数の値が存在して、隣り合う不連続点間のxに対してf(x)が連続である関数」ということかと思います。 フーリエ級数展開できる矩形波(round(x)-int(x))や鋸歯状波(x-int(x))などは区分的に連続な関数に属します。1周期の境界で不連続であってもかまいません。 >区分的に連続な関数f(x)が存在するとき導関数f'(x)が区分的連続ではない関数というのはありますか? 矩形波の平らな連続区間に半円の上半分を2つ並べたもので置き換えた関数 半円の接する所でf'(x)が存在しない(その点でf(x)は連続)。 自信なしです?

lamunes
質問者

お礼

回答ありがとうございます。他に具体的な関数はありませんか?

関連するQ&A

  • 「区分的に連続」と「区分的に滑らか」の概念について

    フーリエ級数について勉強しているのですが、 「区分的に連続」と「区分的に滑らか」の理解が非常に曖昧です。 (1) 「区分的に連続」な関数の私のイメージは 周期の変わり目で不連続であってもいいけど、その不連続点の前後で発散していない関数、 なのですが、どこか不十分でしょうか? (2) 「区分的に滑らか」な関数とは、 「その関数が区分的に連続、かつ1階導関数が区分的に連続」な関数とテキストでは説明されているため、 「区分的に滑らか」ならば「区分的に連続」である、と理解しているのですが、 これは正しいでしょうか? よろしくお願いします。

  • 区分的に連続な関数について

    閲覧ありがとうございます。 質問なのですがいまいち「区分的に連続な点」の概念がよくわかりません。 f(x)=0 (-1≦x<1)    1 (1≦x<3) このような周期関数があり、フーリエ級数と収束定理で級数を出すという問題なのですが解答がx=1,3の時 (π^2)/8 x=0,1の時π/4になります。 ここで疑問なのがなぜx=0,1,3の3点なのでしょうか、 例えばこの関数においてx=2の時も解答に含まれていてもおかしくないと思うのですが・・・

  • 連続関数の拡張

    一次元だとやさしすぎますが、 一般のR^dの閉集合F上での連続関数fが与えられたとき それをR^dの連続関数に拡張することはできますか? できるとすればどうすればよいでしょうか。 なお境界点xでfが連続とは 任意のε>0に対してxの近傍B_εが存在して、 y∈B_ε∩F ⇒ |f(x)-f(y)|<ε を満たすこととします。

  • 連続関数

    連続関数について質問です。関数f(X) において、定義域に属するXの値Aに対して極限値が存在するならばX=Aで連続であると教科書にかいてあったのですが、X=Aで連続ならばグラフはすべて連続な関数になるのですか?連続関数とは極限値が存在する事によって連続関数と言えるのですか?連続関数とは大まかに言えば何ですか?教えてくださいお願いします。

  • 連続関数, 解説もお願いします。

    関数f(x)に対しf(a)=aを満たす点x=aをf(x)の不動点という。 f(x)が閉区間[0,1]上の連続関数であり,その値域が閉区間[0,1]に含まれるとき,f(x)の不動点x=aが区間[0,1]に必ず存在することを示せ。 関連問題も解けるようになりたいので,解説もお願いします。

  • 関数の連続性について

    「関数f(x)の定義域に属するxの値aに対して関数f(x)がx=aで連続⇔(1)lim[x→a]f(x)が存在(2)lim[x→a]f(x)=f(a) (1)(2)のどちらかが成り立たないとき、x=aで不連続である」 と教科書にあるんですが、(2)のみ言えれば極限値が存在し、かつその値はf(a)であると言えるのではないのでしょうか 教科書がわざわざ強調しているのでたいへん気になりました。 よろしくお願いします

  • 連続関数

    関数の連続性を証明するところがわからないので質問します。 xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。 このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。 xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して |f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。 自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。 ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、 f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。

  • 関数の連続性を調べる問題です。

    関数の連続性を調べる問題です。 f(x) = {2xsin(1/x)-cos(1/x) (x≠0)     {0 (x=0) でx→0のときのf(x)の極限は発散するそうなのですが、 その示し方を教えてください。お願いします。

  • 微分可能なのに導関数が不連続?

    一般にm回微分可能でも(d^m/dx^m)f(x)は連続ではないそうですが(本で読みました。) f(x)が微分可能で、導関数f'(x)が連続でないような関数f(x)の例を教えてください。 傾きが不連続(導関数f'(x)が不連続)なのに滑らか(微分可能)ってのがどうもイメージできないので。

  • 関数の連続性

    社会人になってまた数学の勉強始めたんですが、いきなり躓いてしまいました。どなたか助けてください。「無限と連続」の数学 という本を現在やっています。 関数 y=f(x) が x=a で連続であるための必要十分条件は a に収束する任意の数列 a[n] について、数列 { f(a[n]) } が f(a) に収束することである この定理の証明なのですが、 x=a で連続である時 { f(a[n]) } が f(a) に収束することは示せたのですが、逆に { f(a[n]) } が f(a) に収束するとき x=a で連続であるというのが示せません。というか成り立たない気がするのですが… 以下、私の考え↓ f(x)を次のように定義します x=a[n] のとき a[n] x=a のとき a x=/=a かつ x=/=a[n]のとき a+3 この関数の場合 { f(a[n]) }は f(a) に収束するが、x=aが連続でないという命題が示せてしまう 任意のδ>0 s.t. 存在するx∈R |x-a|<δかつ|f(x)-f(a)|>=2 を示す どのようなδをとっても、開区間(a-δ,a+δ)のなかにはx=/=a かつ x=/=a[n] を満たす点が存在しいてしまうのでf(x)はそのxの値においてa+3の値をとり、|f(x)-f(a)|>=2をみたすので上記の命題は真になる 以上が私の考えです。ただ、ちょっと不安に思う点があります。 wikipediaの関数の連続性について書かれている記事だと(http://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%97%E3%82%B7%E3%83%AD%E3%83%B3-%E3%83%87%E3%83%AB%E3%82%BF%E8%AB%96%E6%B3%95) s.t.のすぐ後に「任意のx∈R」とあります。だから連続の命題の否定は 存在するε>0 任意のδ>0 s.t. 存在するx∈R |x-a|<δかつ |f(x)-f(a)|>=ε になるのではないかと思うのですが、私の取り組んでいる本には「存在するx∈R」のような表記がありません。 私の考えはどこで間違っているのでしょうか。