量子力学において運動量を微分演算子に代える物理的意味
量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります.
そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式
HΨ=εΨ
で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題
Ax↑=λx↑
のように「ある固有ベクトルx↑に対してある固有値λが決まる」
ということと似ているのでなんとなく分かります.
波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました.
過去にも同じような質問をされていた方
http://oshiete1.goo.ne.jp/qa587812.html
がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました.
量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます.
なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです.
(1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は?
(2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか?
です.長くなりましたが,よろしくお願いいたします.
お礼
回答有難うございます! なるほど、一番根底にいるのはプランクなんですね~ ボーアやアインシュタインもプランクの理論から量子力学を確立したようですし(Wikipediaより) 為になりました!