• ベストアンサー

集合の濃度

閉区間[0,1]の集合の濃度はN1であることを示せという問題なんですが、まったくわかりません。そもそも濃度とはなんぞや?という状態です。解説や、わかりやすいサイトなどがあればお願します。

質問者が選んだベストアンサー

  • ベストアンサー
  • betagamma
  • ベストアンサー率34% (195/558)
回答No.2

フレアではなく、アレフ1ではないでしょうか。 アレフというのは、イスラエルの公用語のヘブライ語のアルファベットで、英語の「A」に当たるものです。 さて、アレフ1というのは、実数濃度です。 濃度というのは、直感的にいえば、無限集合の大きさ・濃さのことです。無限集合なんだから、どの無限集合も、大きさは無限なんじゃないか?といえば、それはその通りなんですが、無限同士を比較する方法があるのです。 それは、ある無限集合Xと無限集合Yの間に、全単射f:X→Yで、1:1の対応がつけば、XとYは、同じ濃度だ、と定義する方法です。 さて、アレフ1というのは、実数全体の濃度です。当たり前ですが、実数全体は、無限個ありますね。さて、閉区間[0,1]にも、無限個の点があることがわかりますか?例えば、0.1より、ちょっと大きい数というのを考えて見ましょう。 0.11>0.101>0.1001>0.10001>0.100001>...>0.1 と、このように、数を作っていけば、0.11と0.1の間に、無限この数があることがわかりますね。 閉区間[0,1]と、実数全体の間に、全単射となる写像を作ってやればいいのです。つまり、ある全単射な関数f(x) (0<=x<=1)の値域が、実数全体であればよいわけです。 このf(x)は、次のようにして、作れます。 まず、正の実数全体{x|x∈R,x>0}と、実数全体の間に、全単射な写像が作れることを示しましょう。実は、良く知られている次の関数が、この全単射な写像になっているのです。 f(x) = ln(x) (x>0) ln(x)は、xの自然対数です。 なぜか、ちょっと証明してみましょう。ln(x)の値域が、実数全体であることは、既知としてよいですね。x→+0とすれば、ln(x)→-∞ですし、x→∞で、ln(x)→∞。 そして、ln(x)は、連続な関数です。つまり、関数が途中で切れていて、その間で値が飛んでいるなんてことはないので、任意のy∈Rに対して、必ずy=ln(x)とかけるxがあることがわかります。 したがって、正の実数全体と、実数全体の濃度は、同じであることがわかりました。実数全体の濃度のことを、アレフ1といったので、正の実数全体の濃度も、実数全体の濃度と同じアレフ1です。 今は、無限個の話をしているので、有限個の元を加えても、濃度は同じになりますから、正の実数全体に、{0}を加えて、非負の実数全体{x|x∈R,x>=0}も、正の実数全体の濃度も、アレフ1です。 次に、「非負の実数全体」{x|x∈R,x>=0}と、閉区間[0,1]の間に全単射を作ります。 f(x)=2x (0=<x<=0.5) =1/(2x-1) (0.5<x<=1) じーっと見てください。全単射が作れているはずです。 これで、閉区間[0,1]と、非負の実数全体が、同じ濃度であることがわかりました。非負の実数全体の濃度は、先ほど示したように、アレフ1だったので、閉区間[0,1]も、アレフ1です。 実は、三角関数tanを使うと、もっと簡単にできます。tan(x)は、x=-π/2でtan(x)=-∞をとり、x=0で、tan(x)=0で、x=π/2で、tan(x)=∞ですから、xを(-π/2,π/2)で動かすと、実数全体に対応してします。しかも、間が全部連続です。0<=x<=1のとき、-1<=1-2x<=1なので、 -π/2<=π(1-2x)/2<=π/2であることに注意すると、 f(x)= tan(π(1-2x)/2) とすれば、[0,1]の濃度が、実数全体の濃度アレフ1であることが示せます。

poohoney
質問者

お礼

とてもおそくなりました!!すごい丁寧に説明してくださって、本当に感謝しています。ありがとうございました!!

その他の回答 (2)

  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.3

以下の記述で、アレフ記号をNで代用します。 「閉区間[0,1]の集合の濃度はN1」の証明は通常できません。 N1はN0(可算濃度)の次に大きい濃度です。 一方で実数の濃度(連続体濃度)は 2^(N0) で、これは単にN (アレフ) と呼ばれます。 定義により  N1 ≦ N ですが、これが一致するという命題は連続体仮説と呼ばれ、ZFC集合論からは肯定も否定も証明できないことが証明されています。 なお、連続体仮説を前提としてなら証明できます。 それなら「閉区間[0,1]の集合の濃度はN」の証明ですので、No.2さんの記述で良いと思います。

poohoney
質問者

お礼

とても遅くなりました。ありがとうございました!!

  • gengen4
  • ベストアンサー率37% (9/24)
回答No.1

N1の意味が分からないので、問題には答えられませんが、「集合の濃度」というのは集合の要素の個数のことです。 例えば、 A={a,b,c}という集合の濃度は3です。 このとき、|A|=3と表します。 自然数の集合Nの濃度は∞です。

poohoney
質問者

お礼

遅くなりました。ありがとうございます!!

poohoney
質問者

補足

こんな深夜にも関わらず答えてくださって本当にありがとうございます。N1はフレア1のことです。パソコン記号でどうだしたらいいかわからなかったので、、、すみません!!

関連するQ&A

  • 集合の濃度と写像について

    (1) 自然数全体の集合、実数全体の集合を全角の大文字 N , R と表すことにします。 ガウスの整数環 { a + b √- 1 | a , b は整数} 素数全体 N で定義された実数値関数全体 F ( N , R ) 上記の3つの集合の濃度は次の3つのうちのどれに当てはまりますか。 1.N の濃度に等しい。 2.R の濃度に等しい。 3.N , R の濃度のいずれとも等しくない。 (2) 開区間 ( 0 , 1 ) から閉区間 [ 0 , 1 ] への全単射を作ってください。 答えだけでよいので、どなたか教えていただけませんか。

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。

  • 集合の濃度の問題です

    有理数a,b(a<b)を端点とする開区間(a,b)全体の集合の濃度はNo(アレフゼロ)であることを証明せよという問題です。 わたしには全くわかりません。1から詳しくお願いします

  • 無限集合の濃度

    無限集合の濃度について解説してもらえません?

  • 和集合と濃度の関係について

    こんにちは。 集合論の本を読んでいて、わからないところがあります。お力をお貸しください。 わからないところは、ベキ集合のベキを無限にとることによって、無限濃度の可算増加列が得られるが、その可算列の先のさらに大きな濃度の集合Mをとることができるというところです。 自然数の集合Nのベキ集合をB^1(N)とし、そのベキ集合のベキ集合をB^2(N)とすれば、上述の無限濃度の増加列が、「|N|<|B^1(N)|<|B^2(N)|<…<|B^n(N)|<…」として得られます。 このとき、M=⋃(n=1から∞)B^n(N)とおけば、「|B^n(N)|<|M|」が導かれるというのです。 私の疑問は、「n=1から∞」までのB^n(N)の和集合の濃度が、本当に|B^n(N)|を超えるのか?というところです。 といいますのも、アレフにアレフゼロを足してもアレフのままであるように、和集合が単純にB^n(N)より大きくなるとは言えないんじゃないか?と思うからです。 この論理の根拠は(すなわち和集合と濃度の関係についての上述の論証の根拠は)どのようなものなのでしょうか? アドバイスお願いします。

  • 集合の対等や濃度の問題が分かりません。

    二問あります。 1. 任意の集合A、Bに対し、|A-B|=|B-A|ならば、|A|=|B|であることを示せ。 2. 有限集合A、Bに対して、|A|=m |B|=n のとき、AからBへの写像全体の集合の濃度を求めよ。 この二問です。 問1に関しては直感的なイメージも出来、ベン図からも成立しそうなのですが、証明の書き方がわかりません。 問2に関しては問題文が先ず理解できないです。「写像全体の集合の濃度」の意味が良く分かりません。自分でなんとなくのイメージで出した答えは m+n-mn ですが、合っている気がしません。 解説お願いいたします。

  • 集合の濃度に関する質問です

    可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

  • 全ての行列からなる集合の濃度は?

    対称行列は、縦ベクトルと横ベクトルの積で表すことができますから、 n次元ベクトルは、n次元平面と、同じ濃度 したがって、すべて対称行列からなる集合の濃度は、実数の濃度 というのは、わかります。 すべての行列の集合は、対称行列の冪集合と考えてられるのでしょうか? 対角線論法で、確認しようとしたのですが、よくわかりません。 アドバイス、お願いします。

  • 無限集合の連続体濃度のよりも大きな濃度?

    http://ufcpp.net/study/set/cardinality.html#carginality 上記のサイトを眺めておりましたところ、下記の記述に出会いました。 ===引用=== 余談になりますが、 この記号 ‭א は、 ヘブライ文字の1文字目で、ギリシャ文字のα、ローマンアルファベットの a の元になった文字です。 無限基数の中で小さいものから順に、 ‭א0 , ‭א1 , ‭א2 , ・・・ と表します。 昔は、 無限基数を小さいものから順に、 ヘブライ文字の第 n 文字目で表していました (aleph, beth, gimel, daleth, ・・・)が、 読めないし、写植の上でもなかなか表示できないので、 アレフの右下に添字を付ける今の表記法になりました。 ===引用終わり=== 恥ずかしながら、無限集合の濃度の事を聞いて以来、無限集合の濃度は下限が ‭א0で上限がא1なのかと勝手に思っておりました。 ところが、上述のように、 ‭א0 , ‭א1 , ‭א2 , ・・・ ということでありますと、俄然 ‭ ‭‭א2の濃度を持つ無限集合に興味が湧いてまいりました。 連続体濃度よりも濃度が大きい無限集合とはどのような集合でしょうか? 数学の素人なものですから、直観的に理解できそうな実例を一個・二個、お示し頂けるとありがたいです。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。