• ベストアンサー
  • 困ってます

x/x^2+y^2の偏微分

z=x/x^2+y^2について、∂z/∂x,∂z/∂y,∂^2z/∂x^2+∂^2z/∂y^2を求めよという問題です。まず、zをxで偏微分しようとして、yを定数とみなして微分しようとしたら、y^2があるので商の微分法が使えないと思って、どうしたらこれが微分できるんだろうと疑問に思いました。どなたか、この微分の方法が分かる方がいたら回答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数11348
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#21219
noname#21219

z=x/(x^2+y^2)ですよね zをxで偏微分するなら商の微分でいいのではないでしょうか。∂z/∂x= {1・(x^2+y^2)-x(2x)}/(x^2+y^2)^2 =(-x^2+y^2)/(x^2+y^2)^2です

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お答えありがとうございます。ちょっと考えすぎたみたいですね。商の微分が使えるのですね分かりました。ありがとうございました。

関連するQ&A

  • 偏微分の方法

    数学の偏微分についての質問です。以下の式の偏微分が解けません。 δ/δx × x/{√(x^2+y^2+z^2)}^3 δ       x ―― × ―――――――――― δx   {√(x^2+y^2+z^2)}^3 *(カッコ)内の(x^2+y^2+z^2)はすべて√の中です。 分かりにくくてすみません。 商の微分法、また(x^2+y^2+z^2)を置換微分しようとしたのですが、うまくいきませんでした(*_*) たしか、答えは (-2x^2+y^2+z^2)/{√(x^2+y^2+z^2)}^5 です。 わかる方いらっしゃったら、教えてほしいです。

  • 偏微分について

    偏微分について R^2上C^1級関数f(x,y)があるとする。 R^2上任意の(x,y)でx,yそれぞれの偏微分が0であれば、R^2上、fは定数であることを示せ。 そうなることはわかるのですが、どうやって示せばいいのかよくわかりません。 よろしくお願いします。

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • z = x^y の偏微分

    z = x^y の偏微分 こんにちは。 数学の偏微分に関しての質問です。 z = x^y を偏微分せよ という問題について教えて欲しいのです。 ・偏微分可能であることを示す ・偏専関数を求める これは例題でやったのですが、実際に偏微分するときどう手をつければいいのかわからず…。 偏微分というのがどういう事なのかをまず理解してないのも一つなのですが。 実際に解答するならばどう答えればいいのでしょうか。 宜しくお願いします。

  • 偏微分

    数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!!

  • 偏微分

    V= e/4πε (1/√[{(x-a)^2} + y^2 + z^2]) で e,π,εは定数 この時、 -∂V/∂x はという問題で e/4πε( (x-a) / (x-a)^2 + y^2 +z^2)^3/2 という答えになんでなるんですか。 (x-a)^2の部分だけに注目して微分するっていう感覚で3/2が肩にかかるのはわかるのですがどうして x-aが分子に来るのかもわかりません。 この偏微分の手順を教えてください。

  • 偏微分って

    偏微分って微分と何処が違うのですか? また微分や積分や偏微分って何を計算するのですか? 面積?ですか?

  • 偏微分の問題です

    偏微分の問題です z=f(x,y) x=rcosθ y=rsinθ について、Z[x]とZ[xx] (zのxについての、1階偏微分と2階偏微分) をr,θ,Z[r],Z[θ]を用いて表したいのですが、後者のほうがわからなくて困っています。 前者は自分で計算したところ Zのxでの1階偏微分 Z[x] = Z[r] cosθ - 1/z * Z[θ] sin(θ) となりました。これもあっているか不安です。どなたか教えていただけると嬉しいです。

  • 偏微分関数の問題が分かりません!

    大学で偏微分の問題が出されたのですが分かりません。教えてください!! [問]z=f(x,y)はC^2級で、x=rcosθ,y=rsinθとする。次の問いに答えよ。 ・x(∂z/∂x) + y(∂z/∂y)=0の時、zはθに依存することを示せ。 ・(1/x)*(∂z/∂x) = (1/y)*(∂z/∂y)の時、zはrにのみ依存することを示せ。 ・(∂^2z/∂x^2) + (∂^2z/∂y^2) = (1/r)*(∂z/∂r) + (1/r^2)(∂^2z/∂θ^2) となることを示せ。