• ベストアンサー
  • すぐに回答を!

ベクトルの問題

|ベクトルa|=2、|ベクトルb|=3、でベクトルaとベクトルbのなす角が 2/3πのとき、ベクトルa+ベクトルb の大きさを求めよ。 という問題がどのようにして解くのかわかりません。 ベクトルaとベクトルbの内積を求めたのですが、それを使うのでしょうか? お願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数38
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

|ベクトルa+ベクトルb|を求めたいとき。 |ベクトルa+ベクトルb|は直接求めにくいので、 |ベクトルa+ベクトルb|^2 を求めて、平方根をとりましょう。 |ベクトルa+ベクトルb|^2=(ベクトルa+ベクトルb)・(ベクトルa+ベクトルb)  と、計算すればできるはずです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

返信ありがとうございます。 質問者様の言うとおりに、求めてみたら問題を解くことができました。 ありがとうございました。

関連するQ&A

  • ベクトルの問題です

    こんばんは。このベクトルの問題が理解できません a,b(ベクトルです)が|b|=√2 |a|が0でなく a+b と a-2/3b が垂直である時、a,bのなす角を求めよ です。 |a|が決まっている場合なら内積0で、a・bの値を求めて・・ってやっていけば出来ると思いますが、この場合はどうすればよいのでしょうか? よろしくお願い致します。

  • ベクトルの問題で困ってます。

    ベクトルの問題で困ってます。 入試の過去門を解いているのですが答えがないため自分の出した回答があってるのか、またどうやったら解けるのか教えていただけないでしょうか? 書式の都合上ベクトル量を大文字、スカラー量を小文字で表記させていただきます。 平面上のベクトルA,Bについて|A|=3,|B|=4,A・B=9とする。 (1)Aと同じ向きの単位ベクトルPを求めなさい。 (2)Aと垂直で,Bとの内積が正となる単位ベクトルQをQ=kA+lBと表すとき,このkとlを求めなさい。 (3)単位ベクトルRとBのなす角をAが2等分するとして,R=mA+nBと表すとき,このmとnを求めなさい。 という3つの問題なのですが(1)はP=A/3でよいと思うのですが後の2問がどうやって考えても答えにたどり着けません。 (2)垂直条件からA・Q=0で、Bとの内積が正ですからB・Q<90°でよいですよね? (3)はAのままだとなす角が鈍角なので-Aを使うことはわかるのですが…

  • ベクトルの問題

    最近、ベクトルの勉強を始めたのですが、 ベクトルの問題で、 lal=3、lbl=4のとき、aとa+bが垂直になるときの内積a・bを求めよ。 の解き方がいまいちわかりません。 ベクトル自体があまりわからないということもあるので、 わかりやすく教えていただけませんか? お願いします。

  • ベクトルの内積って何?

    角A=90度 AB=5 AC=4 の三角形において次の内積をもとめよ。 というばあいベクトルBA・BC=絶対値のベクトルlBAl・lBClcosαという感じになりますよね。 けど、別の問題では、次のベクトルa,bの内積と、sのなす角θ(0度≦θ≦180度)を求めよ。 ベクトルa=(-1,1) b=(√3 - 1,√3 +1) という問題では内積は、ベクトルa・b=2 となっています。 コサインはいらないのでしょうか・・・? 成分表示をされてるときはいらないのかな・・・とおもいました。 高3なのですが・・・。あまり深い知識はいらないのですが、この2つの何が違うのか?考え方を教えていただけたらと思います。お願いします。

  • ベクトルについて

    ベクトルaを平面Sと直交する法線ベクトルとする。ベクトルbは平面Sと角θ(θ≦90°)で交わる直線m上に存在するベクトルである。a,bを用いてsinθを表せ。 という問題です。 平面Sとベクトルbのなす角がθであるので、a,bのなす角は90°-θとなります。 ∴cos(90°-θ) = (a,b)/|a||b| ((a,b)は内積) ここで、cos(90°-θ) = sinθより、 ∴sinθ = (a,b)/|a||b| としましたが、大丈夫でしょうか? よろしくお願いします。

  • 成分つかうの…?ベクトルのまま解くの?

    ベクトルa=(2,1) ベクトルb=(-4,3)がある。 tを変化させるとき、ベクトルc=a+ tbの大きさの最小値を。 こういう問題のとき…。 「大きさ」の最小値…だからcの絶対値をとって…。 絶対値がついてたら反射的に2乗! そこでla+tbl^2=lal^2 +2t(a・b)+lbl^2 ん・・・内積a・bの値はどうすれば…? ベクトルa,bのなす角をθとして…とかやらないといけないのか… と考えてて答えを見ると… c=a+ tb=(2,1)+t(-4,3)=(2-4t,1+3t) …あ、成分で計算するのか…。 そもそも違った。 …という感じで、ベクトルをどうやって扱えばいいかゴチャゴチャになって理解できてません。たまたま上手くいく場合と、上手くいかない場合と…なんか解けてるって感覚がなくて、操作してたら答えが出た。っていう感覚です、しかし何となくでも解けてしまうことが多く、何が理解できていないのかもよく分からないのです。 上の始めの間違えた解法から、何がいけなかったのか… ご指摘いただければ幸いです。

  • ベクトルの問題を教えてください…!

    ベクトルa,ベクトルbを|ベクトルa|=1、|ベクトルb|=1/2とする。|t・ベクトルa+ベクトルb|の最小値が√3/4である。ベクトルa,ベクトルbのなす角θを求めよ。(ただし、0°≦θ≦180°)

  • ベクトルの問題(2)

    わかるかた解答ください!!※解答以外の回答いりません 以下 →aなどの矢印省略いたします。 次の2つのベクトルの内積を求めなさい。 (1) a=(-5,3,-2),b=(2,3,-1) (2) a=(4,-4,7),b=(6,-2,-3) ベクトルa=(2,-3,-1),b=(3,-5,1),c(2,xによる,-2)について次の問いに答えなさい。 (3) 内積a・bの値を求めなさい。またa,bのなす角を0とするとき、cos0を求めなさい。 (4) a,cが垂直になるようにxを求めなさい。 問題変わって (5) a=(2,x,-3),|a|=7となるような,xの値を求めなさい。 (6) a=(-2,4,1),b=(x+1,-x-3,-x)が垂直になるように、xの値を求めなさい。

  • ベクトルの内積

    2つのベクトルの成す角を求めたいのですが、納得できる数値が得られず困っています。 ベクトルの内積の定義はA・B=|A||B|cosΘと理解しており、ここからcosΘを求めます。 ベクトルA(1,1,0)、ベクトルB(1,1,1)とした場合、二つの成す角は45度だと思うのですが内積の計算からはcosΘ=1/√2とはなりません。cosΘ=2/√6になりますので45度ではないという結果になります。 何故、そうなるのか納得できません。ここが納得できないと次のステップに進めません。 非常に稚拙な質問だと思いますが、どなたか教えてくださいませんでしょうか。よろしくお願いします。

  • 数学 ベクトル

    ベクトルの問題お願いします! 矢印は省略してありますが、a,b,cには すべて→がついています。 (1)|a|=1,|b|=√2であり2つのベクト ルa+bと3a-2bは直交しているとする。 このとき内積a・bの値 、およびaとb のなす角θ(0°以上180°以下)を求めよ。 (2)ベクトルa=(1,2),b=(2,-3),c=(-1,3)に ついて2つのベクトルaとb+kcが垂直 であるとき、実数kの値を求めよ。 (3)|a|=2 ,|b|=3,|a+b|=√3を満たすa,b を考える。実数tに対してc=ta+bとお くとき、a・b=(ア)_____であり、|c| はt=(イ)_____のとき最小値(ウ)_____ をとる。 以上の三問です! よろしくおねがいします!