• ベストアンサー
  • すぐに回答を!

偏微分について

S={y-(ax+b)}{y-(ax+b)}という式を与えられたとき、最小二乗法で最適な直線 y=ax+b を求めるためには aとbについての編微分が 0 に等しいという事を満たすaとbを求めなければいけないらしいのです。 しかし数学をしばらくやっていない私にとって、さっぱりと求め方がわかりません。(そもそもaとbは変数ではないから解けないのではないかと思うのですが) どうか偏微分の基本的なやり方だけでもいいので教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数77
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

最小二乗法でしたら, http://oshiete1.goo.ne.jp/kotaeru.php3?q=24627 http://oshiete1.goo.ne.jp/kotaeru.php3?q=92718 をご覧下さい. 他にも質問検索で「最小自乗法」「最小二乗法」とやると かなりヒットします. kyoroppe さんはちょっと誤解されているんではないかと思います. 測定値が x と y で,これを何回(例えば 100 回)も繰り返しているのです. だから,x と y は 例えば 100 組分の値があるわけで, x(i),y(i) とでも書くべきものです(上の例なら i = 1,2,...,100). S は (1)  S = Σ_{i} {y(i) - a x(i) - b}^2 です. この x,y の(例えば 100 回の)測定の結果が, y = ax + b という式に一番よう合うように a と b を決めようという話です.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • z = x^y の偏微分

    z = x^y の偏微分 こんにちは。 数学の偏微分に関しての質問です。 z = x^y を偏微分せよ という問題について教えて欲しいのです。 ・偏微分可能であることを示す ・偏専関数を求める これは例題でやったのですが、実際に偏微分するときどう手をつければいいのかわからず…。 偏微分というのがどういう事なのかをまず理解してないのも一つなのですが。 実際に解答するならばどう答えればいいのでしょうか。 宜しくお願いします。

  • 偏微分について

    偏微分をこの前習ったのですが、いまいちよく分かりません><どなたか手助けお願いいたします。 位置ベクトルrの独立変数はデカルト座標(x,y,z)で、 Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) またデカルト座標(x,y,z)、極座標(r,θ,Φ)について、デカルト座標を極座標の関数とし、または極座標をデカルト座標の関数として偏微分を行うときに、 Δx/Δθ=rcosθ×cosΦ Δy/ΔΦ=rsinθ×cosΦ Δz/Δr=cosθ でよいのでしょうか?? あと、これの逆の Δr/Δy,Δθ/Δz,ΔΦ/Δx のやり方が分かりません。 どなたかよろしくお願いいたします。

  • 偏微分

    画像で添付いたしました式について正しいやり方で、 x,y,zそれぞれについてtで偏微分できますか?(><)

  • 偏微分の方法

    数学の偏微分についての質問です。以下の式の偏微分が解けません。 δ/δx × x/{√(x^2+y^2+z^2)}^3 δ       x ―― × ―――――――――― δx   {√(x^2+y^2+z^2)}^3 *(カッコ)内の(x^2+y^2+z^2)はすべて√の中です。 分かりにくくてすみません。 商の微分法、また(x^2+y^2+z^2)を置換微分しようとしたのですが、うまくいきませんでした(*_*) たしか、答えは (-2x^2+y^2+z^2)/{√(x^2+y^2+z^2)}^5 です。 わかる方いらっしゃったら、教えてほしいです。

  • 偏微分の問題です

    偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。

  • xについての偏微分

    2変数関数f(x,y) f(x,y) = xy^2/x^2+y^2   ((x,y)≠(0,0)のとき)     =   0 ((x,y)=(0,0)のとき) をxについて偏微分するとどうなりますか?また、(0,0)での偏微分はどうしたらいいのでしょうか? 宜しくお願いします。

  • 偏微分の計算の仕方を教えて下さい。

    U=x3y3 この式で、Uをxについて偏微分、yについて偏微分したいのですが、この計算の仕方はどうやるのでしょうか?普通の微分の計算とはやり方がどう違うのでしょうか?

  • 偏微分とは・・・?

    物理化学の課題をしていたら教科書に「偏微分が零になるような・・・」とありました。偏微分とは普通の微分とは違うのでしょうか。あと与えられた式の前に「∂」というのがあったのですがこれはやはり偏微分の記号なのでしょうか。

  • 電位の偏微分

    画像のようにφが定義されていて、極座標表示してあったrcosθをxに、rを√[x^2+y^2]に戻した式 φ = px / {4πε_0(x^2+y^2)^(3/2)} のx成分の偏微分 E_1 y成分の偏微分E_2 について、変数はxとyだけの場合、画像の結果になるのですが、 ここでE_1のアウトプットで -1/(x^2+y^2)^(3/2)が導かれているのはどうしてでしょうか。 手前の3x^2/…の方は合成関数の偏微分より求められるところまではよかったのですが-1/…のパートがどうして計算過程で導かれるのか恥ずかしながらわかりません。 公式と手順をお手数ですが詳しく教えてください。