• 締切済み
  • 困ってます

最小二乗法。円の方程式x^2+y^2+Ax+By+C=0において、最小二乗法でA,B,Cを求める式をあらわすとどうなりますか。

円の方程式x^2+y^2+Ax+Bx+C=0において、最小二乗法でA,B,Cを求める式をあらわす場合、どうなりますか。複雑な行列式であらわさないとだめなのですか。y=ax+bの場合の最小二乗法は何とかわかるのですが、未知数がA,B,Cの3つになると、わからなくなります。ご指導お願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1232
  • ありがとう数2

みんなの回答

  • 回答No.1

何を誤差に捉えるかで変わってくるのかもしれませんか、結局、 -(x^2+y^2)=Ax+By+C x,yは計測値ですから計算時には定数です。 z=Ax+By+C  (ただし、z=-x^2-y^2) という重回帰分析をしているのと同じになります。 重回帰分析については最小二乗法の応用・発展のようなものですから 最小二乗法が理解できているなら理解は容易と思います。 (∂S/∂A=0,∂S/∂B=0,∂S/∂C=0の連立方程式を解くというところは全く同じです。) 後、作るのは面倒ですが、行列を作ったほうが処理ははるかに簡単ですよ。

参考URL:
http://aoki2.si.gunma-u.ac.jp/lecture/Regression/mreg/mreg1.html,http://fps01.plala.or.jp/~okpl/R11.htm

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。とても参考になりました。簡単な回帰分析だけでなく、これからは重回帰分析も勉強するつもりでおります。本当にありがとうございました。

関連するQ&A

  • 最小二乗法について

     y=ax+b+c/x という式での最小二乗法の求め方を 教えてください。

  • 円の方程式を最小二乗法で求める

    工具顕微鏡で測定した測定点の座標から、エクセルにて円の方程式を最小二乗法で求める方法をお教え下さい。  過去の質問から、「楕円」についてのご回答があり、参照させていただき、自分なりに応用(xa+yb+c=-(x^2+y^2)として)してみたのですが、測定点の座標から得られる行列P、及び、その転置行列P'との積の逆行列とP'と()内の式の右辺から得られる行列との積を計算することができません。(3点のデータでは計算できましたが、Pを入力し、P'を求め、…と云った段階的な計算方法を採りました。)  宜しくお願いします。

  • 円の最小二乗法の公式

    いくつかのデータから最小二乗法で近似曲線を求めたいのですが、よくわかりません。そのデータ集の近似曲線は円になります。 最小二乗法を調べ、1次、2次関数についてはわかりました。ある点の座標を(x1,y1), (x2,y2)…、近似曲線上の座標を(x1,y’1),(x2,y’2)… とした時、 (y’1-y1)^2 + (y’2-y2)^2 … が最小となるような係数a,b などを偏微分 → 連立方程式で求めるという方法でした。 円についても、同様の方法で r^2 = (x-a)^2 + (y-b)^2 のような近似曲線の式が求められるのでしょうか?1次関数などのように、y’1-y1を求めようとすると、±√ が出てきてしまい、ややこしくなる気がしますが、これを解くしかないのでしょうか?もしくは別の解法があるのでしょうか?詳しく教えていただけたらと思います。よろしくお願いします。

  • 最小二乗法でa、bを求める公式を教えてください

    最小二乗法について良くわからないのですが、教えてください! y=a/(x+b)の場合で、n個のx、yのデータがあります。 最小二乗法で、aとbを求める。 という問題なのですが、aとbを求める公式を教えてください!

  • 最小二乗法の応用について

    実験により、xに対するyの値をxの値をかえながら、N回測定した。測定したxに対するyの関係をグラフに描くと、次の二次関数で表現するのが適当であることがわかった。 y=ax*x+bx+c この時、最小二乗法によりパラメータa、b、cの値を求める式を導出せよ。という問題なのですが、どのようにしたら最小二乗法で求めることができるのですか? どうか教えてください

  • 2次の最小二乗法

    1次(ax+b)の最小二乗法は、 http://szksrv.isc.chubu.ac.jp/lms/lms1.html に載っている通りに求めるのですが、 2次(ax^2+bx+c)のa,b,cを求める式はどうなるのですか?

  • 円の最小二乗法について

    今、研究を行っていて、円の最小二乗法を使いたいと思い、このサイトの質問欄でこの回答を見ました。 http://oshiete1.goo.ne.jp/qa3712186.html この回答No.2の中に「半径の2乗の差の総和をゼロとする方法」とありましたが、よく意味がわかりません。この意味がわかる方よろしくお願いします。 また、円の最小二乗法でほかによい方法があれば、お願いします。

  • y=a/(x-b)+cの最小二乗法

    y=a/(x-b)+cの最小二乗法 y=a/(x-b)+c という、反比例の式をx方向に+b、y方向に+c平行移動したような曲線の係数a,b,cを求めるための最小二乗法の方法を教えていただけないでしょうか。 工夫してみたのですが、なかなかうまくいきませんでした。 すみませんが、力を貸してください。

  • 最小二乗法の解き方

    こんにちは。 最小二乗法で解くらしいんですが、解き方がわかりません。 問題は、 ||(Axーb)||=0 (Aはm×n行列)(m>n)            (xはn×1) のとき、b=0で ||x||=(x^T)x=1の条件でxを最小二乗法 でどうやって求めたらよいのでしょうか。 よろしくお願いします

  • 最小二乗法

    円x^2+y^2=1上の点Pにおけるこの円の接線とx軸、y軸との交点をそれぞれA,Bとして、 Pが第一象限を動くとき、線分ABの長さLを求めよ。 なお、Lの最小値の存在理由も述べよ。 というもんだいなのですが、 線分ABはy=txとなるので、このtを最小二乗法でもとめるんだと思うのですが、 最小二乗法の理論値、実測値などが、まだ良くわかりません。 と言いますか、傾きが最小ならLは最小で合ってますでしょうか? 傾きが45°のときが怪しくなってきたのですが・・・ また、最小値の存在理由ってどうやったら説明できるのですか? よかったら、教えてください。