- ベストアンサー
ミクロ経済でわからないんです。
完全構想市場のとき、供給関数がK=2p-10,需要関数K=10-pで、Yを生産する関数がY=K2/3L1/3と与えられているときYを10生産するとき、最適な資本サービス量、労働力はいくらになるのでしょうか?(労働者の賃金は1、銀行の利子率が0,2、資本減耗率が0,1)道筋だけでもよいのでわかる方教えてください。お願いします。生産関数の2/3,1/3は乗法です、書き方が悪くてすみません。
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
前回の回答にも書いたのですが、この問題の「問題点」を改めて書きます。決して質問文が上手に書けていないのではなく、問題自体に矛盾があるのです。 問題中に K の需要関数が与えられていますが、これが min{w L + r K} s.t. y~ = f(L,K) から導き出された需要関数 K = K(w,r,y~) と異なっています。 また、この企業を完全市場内の小企業と捉える事が可能かどうかも計算してみましたが、不可能でした。 この問題は一期間問題ですが、資本減耗を考えるのは2期間以上期間が必要ですが、そうすると投資の問題になります。多期間モデルでの均衡を考えても良いのですが、それだと問題の趣旨が変わってしまいます。 もしスクラッププライスを考えるのであれば(利子率+資本減耗率)が資本財のレンタルプライスになります。 > 収入/価格=利子率+資本減耗率というのは使うのでしょうか? どこからでてきたのか知りませんが、収入/価格は、結局生産量ですが、この問題では生産量=10、利子率+資本減耗=0.3となり間違いです。また生産量が 10 と与えられているので、収入は関係ありません。 ラグランジュ乗数法は min{w L + r K} s.t. 10 = K^(2/3) L^(1/3) という問題を Lg = w L + r K + λ {10 - K^(2/3) L^(1/3)} という関数(ラグランジュ関数)を定義し、 K、L、λについて偏微分をして0とおき、連立方程式から K、L を求める、という方法です。
その他の回答 (1)
- at9_am
- ベストアンサー率40% (1540/3760)
問題がおかしいですね。 この問題の通りだと、Kの需要関数と供給関数があるのですから、Kについては需給一致条件から一意に求まるはずです。更にYを10単位生産するのですから、生産関数から労働投入量も一意に求まるはずです。ところがこれを計算した結果と、賃金・利子率が問題と合いません。 更に言えば、この問題は一期間のみを問題にしているため、資本減耗は何の意味も持ちません。 前半部を無視して、Yを10単位生産するとき、賃金・利子率を所与とした上での最適な資本量・労働量は min{w L + r K} s.t. 10 = K^(2/3) L^(1/3) を計算して求められます。具体的にはラグランジュ乗数法を用いて Lg = w L + r K + λ {10 - K^(2/3) L^(1/3)} を L、K について微分して0とおけば良いです。
補足
丁寧な回答ありがとうございます。問題がおかしかったですか。上手にかけてなくて申し訳ないです。 資本財を調達する市場の供給関数K=2p-10が需要関数がK=10-p,資本サービスを需要し建築物Yを生産する企業の生産関数がY=K2/3L1/3です。 建築物yを10だけ生産するときの資本サービス量、労働量を求めるようです。企業の労働者の賃金が1銀行の資本利子率が0,2資本減耗率が0,1です。 これでもやはりおかしいでしょうか?ラグランジェがよくわからないのですが、収入/価格=利子率+資本減耗率というのは使うのでしょうか? 質問が多くてすみません。
お礼
わかりやすく指摘していただいてありがとうございます。筋の通ってない質問をしてしまってすみません。ラグランジェ乗数法という新しいことを教えていただいたので早速勉強してみたいとおもいます。今回は本当にありがとうございました。