• ベストアンサー

オイラーの公式と微積分の関係

sinとcosは微積分において,ちょうどガウス座標での回転に一致しているそうですが,このこととオイラーの公式とはどのようにつながっているのでしょうか。sin をiとおくかcosをiと置くのかわかりませんが、不思議な感じがします。]

質問者が選んだベストアンサー

  • ベストアンサー
  • 31415926
  • ベストアンサー率71% (28/39)
回答No.2

すみません, > (sin(x))'=cos(x), (cos(x))'=sin(x) -- (*)となる. は (sin(x))'=cos(x), (cos(x))'=-sin(x) -- (*)となる と訂正します.

その他の回答 (1)

  • 31415926
  • ベストアンサー率71% (28/39)
回答No.1

オイラーの公式 e^{ix} = cos(x) + i sin(x) の両辺をxで微分すると, 左辺の微分=ie^{ix}=-sin(x)+i cos(x) 右辺の微分=(cos(x))' + i (sin(x))' よってsin,cosの微分は (sin(x))'=cos(x), (cos(x))'=sin(x) -- (*)となる. 左辺の微分は指数関数の微分で,指数関数の肩に ixがのっているため,このiが外に出てi倍になる, つまりgauss座標での回転になるというわけです. 上の計算より, オイラーの公式と指数関数の微分を知ってさえ いれば(*)という面倒な式を忘れてしまっても いいということになりました. オイラーの公式とは,三角関数というやや面倒な ものを指数関数という形式的にはよりわかりやすい もの(但し肩にのる数は複素数になるが)に置き換え られる,という便利な式であります.

kaitaradou
質問者

お礼

御懇切なご説明をどうもありがとうございます。勉強に際し,大切に参考にさせて頂きます。

関連するQ&A

  • オイラーの公式とガウス座標の関係

    オイラーの公式e^(iθ)=cosΘ+isinΘの右辺はガウス座標で原点からのベクトルのような感じで理解すべきなのでしょうか。またこれと関連して虚数単位iをかけると90度だけ回転するということとどのような関係があるのか考えるヒントを教えてください。

  • オイラーの公式の用い方

    オイラーの公式とド・モアブルの定理を利用して3倍角の公式を証明せよ。という問題のなのですが、私にはオイラーの公式の出番がないように思えます。。。 ド・モアブルの定理 (cosθ+i×sinθ)^n=cosnθ+i×sinnθ でn=3にして実部と虚部を比較するのではだめなのでしょうか?? 一応。。。 オイラーの公式 e^iθ=cosθ+i×sinθ

  • オイラーの公式

    オイラーの公式 exp[iθ]=cosθ-isinθなのに、 なんでexp[iωt]=sin(ωt)と書けるんでしょうか? 知らず知らずのうちに電気回路で使っていましたがなんでですか? 電気回路ではωtを使うのでθをωtにしました。

  • オイラーの公式を使う問題

    Rn=1+(1/2)cosθ+(1/2^2)cos2θ+・・・+(1/2^n)cosnθ(0<=θ<=2π)とする。 任意の実数αに対して、オイラーの公式:e^iα=cosα+i*sinα(iは虚数)が成立することを 用いて極限lim(n→∞)Rnを求めよ。 という問題をどのように解くかが全くわかりません 教えていただきたいです よろしくお願いします。

  • ピタゴラスの定理とオイラーの公式の関係(?)

    sin^2x+cos^2x=1という公式を cos^2=1-sin^2xと変形し、虚数単位を用いて cos^2x=1+(isinx)^2とすると cosxを斜辺とするピタゴラスの定理(?)のようになりますが、これはオイラーの公式 e^(ix)=cosx+isinx と何か関係があることなのでしょうか。

  • ピタゴラスの定理 とオイラーの公式の関係

    sin^2x+cos^2x=1はピタゴラスの定理の一例だと思いますが、この式をcos^2x-(isinx)^2と変形して(cosx+isinx)(cosx-sinx)=1としてみるとオイラーの公式の右辺と同じ項が出てきますが、ピタゴラスの定理とオイラーの公式の間には何か関係があるのでしょうか。

  • オイラーの公式の導き方

    オイラーの公式 e^(iθ)=cosθ+isinθ を導く方法で、マクローリン展開を使う方法は知っているんですけど、他にどのような方法があるでしょうか?

  • オイラーの公式について、おいら質問があります。

    e^(2πai)があるとして、aは実数、iは虚数単位とします。 このとき、オイラーの公式により、 e^(2πai)=cos(2πa)+isin(2πa)-----1 ですよね? そして、e^(2πai)=(e^(2πi))^a------2 ですよね? で、a=1/2としたときに、1では、 e^(2πai)=cos(π)+isin(π)=-1 になって、2では、 e^(2πai)=(cos(2π)+isin(2π))^(1/2)=1^(1/2)=1 になるから、1と2で答え違いませんか・・・?どこがおかしいか教えてください!!

  • オイラーの公式

    ある素人向けの数学の本に e^iπ+1=0 という式が紹介されており、筆者がこの式は数学の美と調和と不思議を示すものとして自分の墓誌に刻んだと書いてありました。 もともとは e^ix=cosx+isinx というオイラーの公式のxをπとおいてこの式が導かれるようですが、そもそもオイラーの公式というのはどのような背景で導き出されたもので、数学的にはどのような意味があるのでしょうか。 自然対数と虚数と三角関数が関連しているということが不思議なのですが、数学の歴史の中では、この式が導き出されたのはなんらかの必然性があったのでしょうか。

  • x^3-1=0の虚数解と三角関数の関係について

    前の質問でx^3-1が(x-1)(x^2+x+1)の様に因数分解できることを教えていただきましたが、x^2+x+1=0の解(-1±√3)/2の-1はcos(π/3)、±√3は±sin(π/3)に相当するとすれば、一見関係がないように思われるx^2+x+1=0がオイラーの公式とガウス座標を結び付けているように思われるのはどういうことでしょうか。