• 締切済み

重力場方程式の球対称な解について

重力場方程式を球対称を仮定して解く時、時空は一般に ds^2=f(r,t)(cdt)^2+g(r,t)dr^2+h(r,t)(dθ^2+sin^2θdφ^2)+k(r,t)cdtdr と書けることの物理的意味は分かります。 しかし次に適当な座標変換によって ds^2=f(r,t)(cdt)^2+g(r,t)dr^2+h(r,t)(dθ^2+sin^2θdφ^2) と01成分の項を消してしまえることが納得がいきません。 どういう物理的意味があってこの項を消去できると言えるのでしょうか? 数学的な観点から言えばうまくr軸と時間軸をとることで時間軸がr,θ,φの張る超曲面と直交するようにできるということなのでしょうが、球対称性とどう関係するのかもイマイチ分かりませんし。 物理的観点・数学的観点問いませんので「式だけでない直感的説明をお願いします」

  • nabla
  • お礼率92% (82/89)

みんなの回答

  • shiara
  • ベストアンサー率33% (85/251)
回答No.3

 直交するというには、普通の座標軸でも同じことなので、2次元平面のx軸とy軸について考えます。  y軸上の点(0,a)と、x軸上の点(b,0)、及び(-b,0)との距離は、x軸とy軸が直交していれば、共に、√(a^2+b^2)となります。もし、x軸が傾いている場合は、これらの距離が違ってくることは、直感的に分かります。この関係が、空間軸と時間軸と間にもあるということだと思います。

  • shiara
  • ベストアンサー率33% (85/251)
回答No.2

 任意の点(ct,r,θ,φ)から微小なベクトル(cdt,dr,dθ,dφ)だけ離れた点との間の距離と、時間成分のみ反対符号のベクトル(-cdt,dr,dθ,dφ)だけ離れた点との間の距離が、常に同じであるという条件を付けると、dtの1次の項はゼロでなければなりません。ということなのかと思いました。

nabla
質問者

補足

>任意の点(ct,r,θ,φ)から微小なベクトル(cdt,dr,dθ,dφ)だけ離れた点との間の距離と、時間成分のみ反対符号のベクトル(-cdt,dr,dθ,dφ)だけ離れた点との間の距離が、常に同じであるという条件を付けると、dtの1次の項はゼロでなければなりません。 この条件と「時間軸が空間座標が張る3次元多様体と直交する」という条件とどう違うのかよく分からないのですが… もう少し詳しくお願いします。

  • shiara
  • ベストアンサー率33% (85/251)
回答No.1

 時間反転に対して対称となるように条件が仮定されているのだと思います。

nabla
質問者

お礼

早速の回答ありがとうございました

nabla
質問者

補足

>時間反転に対して対称となるように条件が仮定されているのだと思います。 01成分の項をとっても時間反転に対称ではないのですが…

関連するQ&A

  • 初歩的な質問ですが(対称について)

    tを媒介変数とする曲線 x=sin(t) y=sin(2t) (リサージュ曲線) についてなんですけど、この媒介変数表示からx軸、y軸対称と言うのはどのように導けばいいのでしょうか? 解答にはsin(t)の周期は2π t=θ、π-θ、π+θ、2π-θに対応する点をそれぞれP,Q,R,Sとし、P(x,y)とするとQ(x,-y),R(-x,y),S(-x,-y)となる。 よって曲線はX軸、Y軸、にたいして対称である となっていました。なぜこのような考え方で、対称がいえるのかがよくわかりません。お暇な時にでもよろしいので、ご返答してくれると嬉しいです。

  • 対称性に関して

    x=4cost-2cos2t y=4sint-2sin2t という軌跡関して、x軸に対称であるというのはどこからわかるんでしょうか。 ご教示お願い致します。

  • 構造関数の被積分関数の球対称性

     N個の1次元調和振動子のハミルトニアンHは H=Σ〔i=1~N〕{p〔i〕^2/2m+m(ω^2)(q〔i〕^2)/2} の時、被積分関数の球対称性から次式を示そうと思っています。  Ω(E)={(2π/ω)^N}{E^(N-1)/Γ(N)} ですが、等式 (d^2N)z={2π^(N)/Γ(N)}r^(2N-1)dr を何処かで用いるとしか分かりません。  誠に恐縮で御座いますが、どなたか御回答を宜しく御願い申し上げます。

  • 波動方程式の解→横波

    真空中を伝わる電磁波、E=(E_x,E_y,E_z), H=(H_x,H_y,H_z)には、 ∇×E=-μ∂H/∂t, ∇・E=0, ∇×H=ε∂E/∂t, ∇・H=0 が成り立っている。 (∇^2-εμ∂^2/∂t^2)E=0 の3次元の一般解を求め、波が縦波であるか証明せよ、最後にこの結果から言える物理的現象を記述せよ。 初期条件は書かれていないので、一般解は偏微分方程式を変数分離法で解くとそのまま文字が残って、 E=((A_1)cosω′t+(A_2)sinω′t)×((B_1)cos(ω_1)x+(B_2)sin(ω_1)x)×((C_1)cos(ω_2)y+(C_2)sin(ω_2)y)×((D_1)cos(ω_3)z+(D_2)sin(ω_3)z) となりますが、ここから横波であることを証明するにはどうすればいいのでしょうか? それとも、指数形で答えを出した方が考えやすかったですかね? また、最後の物理現象ですが、「電場と磁場が互いに直交する」ということだと思ったんですが、この解から言えますか? 教えてください。

  • 回路の対称性の考え方

    よろしくお願い致します。高校物理です。今、特に対称性のある回路について勉強していますがわからないことがあります。 問題 抵抗値rの抵抗線を図のように8本つなぎ、起電力Vの電池を接続した。 Ac間の電流と回路の全抵抗Rを求めよ。 回路は下のとおりです。            b           / | \  電池(V)― a -  c―  e ― 電池(V)にもどる          \ | /             d  わかりにくい図ですが、a, b, c, d, eはすべてつながっています。a, b, e, dを頂点としたひし形で、対角線が入った状態です。そしてその8本のひし形の辺と対角線がすべて抵抗値rの抵抗線でつながれています。 解説では、これをキヒルホッフの法則で解くために、電流を文字でおくのですが、その際に回路の対称性を利用しているらしいのですが、私は、回路の対称性というのが、いまいちよくわかりません。 解説では、回路の対称性より、電池からでるのが、I. a-b間とa-d間をI2 a-c間をI1 c-b間とc-d間をI3 b-e間と、d-e間をI2+I3 c-e間をI1-2I3とおいています。 ここで疑問なのは、回路がどこを軸にして対称と考えるかということです。 普通数学だと、x軸やy軸に関して対称といいますが、このような回路では、どこが軸になるのでしょうか? a-eが軸でしょうか?それとも、b-dが軸? また、私が解説について疑問に思うのはどうして、a-b間とa-d間はI2とおいたのに、a-cだけ違うおき方なのでしょうか?三つともおなじではないのでしょうか?だから、a-b, a-d, a-cともに1/3Iとでもおいたらいいと思うのですが・・・a-cを軸とみているからですか? 同様に、b-eとd-eが同じなのに、c-eだけ違うのも疑問です。 実際、これを解くと、I1=I2=V/2r, I3=0となり、 a- b, a-c, a-dは同じになります。同様に、b-e, c-e, d-eも同じになります。 それなら最初から、a-b, a-c, a-dそして、b-e, c-e, d-eも同じ文字でおけばいいと思いますが、それでもよいでしょうか? それともこの問題だけたまたまa-b(a-d)とa-cが等しくなっているのでしょうか? 長くなってしまいましたが、 ○回路の対称性というのが、何を軸にして対称と考えればいいのか、 ○未知の文字を置く際に、どのようにおけばいいのか教えていただけたらと思います。 補足が必要であればさせていただきますので、よろしくお願い致します。

  • x軸対称

    例えば0≦t≦πでnを自然数としてx(t)=sinx, y(t)=sin2nxとすると、x(π-t)=x(t),y(π-t)=-y(t)ですが、なぜここからx軸対称が言えるのでしょうか。 また一般な三角関数系の関数でどういう時にx軸、y軸、原点対称が言えるのでしょうか

  • 重力半径

    球対称な静的重力場についてです。 極座標を用いて、 x^0=ct,x^1=r,x^2=θ,x^3=φとします。(ここでの^は単なる上つきの添え字) 微小世界距離の2乗 ds^2=g_{00}(r)(dx^0)^2+g_{11}(r)(dr)^2+r^2{(dθ)^2+sin^2θ(dφ)^2} とすると、 g_{00}(r)=-1+a/r g_{11}(r)=1/(1-a/r) a=2GM/c^2=κc^2M/4π (重力半径) G:万有引力定数 c:光速 M:物質の質量(例えば太陽) κ:アインシュタインの重力定数 r->aのとき、g_{00}->0,g_{11}->∞ rがaを越えると、g_{00}とg_{11}の符号が逆転 というところまでは数学的にわかったのですが、このことからr<aから出た光がr>aへ出れないという物理的な結論が、どうやって導かれるんでしょうか。

  • 正四面体に内接する4個の球の半径の求め方

    正四面体に内接する4個の球の半径の求め方 「1辺の長さが6の正四面体ABCDがある。 頂点Aから底面BCDへ引いた垂線の足をHとする。 また、直線BHと辺CDとの交点をMとする。 半径がrの球が4個あり、どの球も他の3個の球と接しており、また、正四面体ABCDはこの4個の球を内部に含み、四面体のどの面も3個の球と接している。 このとき、rの値を求めなさい。」 について、同じ質問をしている方がいましたが、『高校への数学』では 対称性を用いて解答していました。 「正四面体の対称面(2頂点A、Dと辺BCの中点を含む面)で考えると、4個の 球のうち2個の中心がその面上に存在し・・・」と解説してました。 ここでわからないのが、なぜその対称面上に2個の球の中心が存在するのか というところです。 クラスの人に聞いても、「対称性から明らか」と言われてそれ以上詳しく聞けません。 この「対称性から」という、何でもかんでもひっくるめた言い方がいつも気持ち悪く感じます。 私が納得したいのは、 ○ こう言う理由で、2個の円の中心が対称面に存在する ○ こう言う理由で、対称性(面対称、点対称、回転対称)というものが言える(いきなり「対称性から・・・」ではなく) です。 面倒くさい質問かもしれませんが、よろしくお願いします。

  • 主慣性モーメント

    球殻の主慣性モーメントを求めたいのですがこのとき面積要素(dS)がわかりません。 r^2sinθdθdφとrdθdrどちらなのでしょうか? 理由も教えてください。

  • 3次元球対称の場でのシュレディンガー方程式

    3次元球対称の場における波動関数ψを求める際に、θ方向の式についてわからないことがあったので、どなたかわかる方教えてください。 ラプラシアンを極座標表示にし、ψ=R(r)Θ(θ)Φ(φ)と変数分離して、 sinθ ∂/∂θ (sinθ ∂Θ/∂θ)+{l(l+1)(sinθ)^2 -m^2}Θ=0 を導出するところまではできたのですが、 x=cosθとおいて 連鎖律などから ∂Θ/∂θ=∂Θ/∂x (-sinθ),∂^2Θ/∂θ^2=∂^2Θ/∂x^2 (-sinθ)^2 を使って上の式を変形したのですが、 (1-x^2)∂^2Θ/∂x^2-x∂Θ/∂x+{l(l+1) -m^2/1-x^2}Θ=0 となり、ルジャンドルの陪微分方程式と第二項の係数だけが異なってしまいます。 第二項の係数が1でなく2になると思うのですが、どこが間違っているのでしょうか教えてください。