• ベストアンサー
  • 困ってます

代数学

体Lを体K(Kの標数は0)の有限次ガロア拡大体とします。 Gal(L/K)は、LからLへの環同型かつそのK上の制限は恒等写像となるもの全体で、 L^(Gal(L/K))={α∈L | 任意のσ∈Gal(L/K)に対して、σ(α)=α} です。 α∈L^(Gal(L/K))とし、L^(Gal(L/K))の中にはαとK上共役な元が存在しないとします。 このとき、α∈Kとなる事を示して欲しいです。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

仮定より、αのK上の共役元はすべてL^(Gal(L/K))に含まれません。したがって、αのK上の最小多項式f(x)は、K[x]内で一次式(x - α)のみを持ちます。 また、体Lを体Kの有限次ガロア拡大体と仮定しているので、Gal(L/K)は有限群です。したがって、L^(Gal(L/K))の任意の元は、その自己共役元を含みます。 つまり、αは自己共役であるため、Gal(L/K)の元σに対して、σ(α) = αが成立します。そして、自己共役の定義より、αはK上にあるため、α∈Kとなります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

理解できました。回答ありがとうございます。

関連するQ&A

  • 代数学の質問です。

    体Lを体Kの有限次ガロア拡大体とします。 KとLの中間体Mとすると、 M=L^(Gal(L/M))となる事を示して欲しいです。 ただし、Gal(L/M)は、LからLへの環同型かつそのM上の制限は恒等写像となるもの全体で、 L^(Gal(L/M))={α∈L | 任意のσ∈Gal(L/M)に対して、σ(α)=α} です。 自分なりに、 M⊂L^(Gal(L/M)) は、示せたのですが、逆の包含関係が示せません。 α∈L^(Gal(L/M)) \ Mが存在しない事を示そうと思ったのですが、わからなくなりました。

  • 代数学

    Kを体とし、MをKの有限次ガロア拡大体、LをMの有限次ガロア拡大体とするとき、 LはKの有限次ガロア拡大体であることを証明して欲しいです。 よろしくお願いします。

  • 代数学の質問です

    K,K'を体、σ:K→K'を環同型写像とします。K上の多項式環K[X]の元f(X)の最小分解体をLとします。K'[X]の元fσ(X)のK'上の最小分解体をL'とすると、σは環同型写像τ:L→L'に拡張される、つまり、制限写像τ|K=σとなる事を示して欲しいです。 ただし、f(X)=ΣaiX^i(aiはKの元)に対して、 fσ(X)=Σσ(ai)X^i(σ(ai)はKの元)です。

  • 代数の問題についてです。

    以下の代数の問題について教えてください 1.Q(√2、√3、√5)=Q(√2+√3+√5)となることを示せ。 2.[Q(√2、√3、√5): Q]をもとめよ 3.√2+√3+√5のQ上の既約多項式(最小多項式)を求めよ 4.ωを x^2+x+1 の根としたときQ(3√2(以下、これは2の3乗根) 、ω)の自己同型写像であって3√2とωを入れ替えるものが存在するか? 5.F⊂B⊂E:体の塔、 B: f(x)∈F[x]のF上の分解体、 E: g(x)∈F[x]のF上の分解体 とする。 このとき、写像Ψ : Gal(E/F) → Gal(B/F) <σ → σ|B> は全射であることを示せ。

  • Gal_Q(x^4+1)がZ_2×Z_2の同型

    Gal_Q(x^4+1)がZ_2×Z_2と同型になる理由についてなぜなのかがよくわかりません。 (具体的に言うと、Gal_Q(x^4+1)の構成要素と、その各々の元がZ_2×Z_2の各元にどのように対応しているのかがよくわかりません。) x^4+1=0を計算すると、±(1+i)/√2, ±(1-i)/√2となり、Gal_Q(x^4+1)がQ-同型写像であることと、Z_2×Z_2が{1,α,β,αβ}で構成されるアーベル群であることはわかります。 ※Gal_Q(x^4+1)は体Q上の多項式x^4+1のガロア群 もしもわかられる方がおられれば、お教え頂けないでしょうか?

  • Gal(L/K)∋σ→σ(α) ∈Xが単射の理由

    「単純代数拡大L⊃K(α)⊃Kの場合、ガロア群の位数に関する不等式について|Gal(L/K)|≦[L:K]が成立する」ことに対する証明問題について考えています。 「環と体の理論(酒井文雄著)p110」には、原始元αのK上の最小多項式をf(x)とし、XをLにおけるfの根の集合としたとき、写像Gal(L/K)∋σ→σ(α) ∈Xが単射であると書かれていますが、この理由がわかりません。 (例えば、簡単な具体例L=C,K=Rのときにはわかります。) もしもおわかりになる方がいらっしゃれば、お教え頂けないでしょうか?

  • 代数学の証明問題がわかりません。

    Fを標数p>0で元の数q個の有限体とし、その素体をFоとする。 Fの元はちょうどFо係数の多項式 X~q-X=0 の根全体となっている。 の証明がわかりません。教えていただけないでしょうか。

  • ガロア拡大

    体Kの単純代数拡大体 L=K(γ) f(x):元γのK上の最小多項式 n=deg(f) G=Gal(L/K) M=L^{G}(固定体) g(x)=Π(x-σ(γ)) σ∈G の時、g(x)∈M[x]を示して、[L:M]=|G| を示したいです。 g(x)∈M[x]であることとはつまり、 σ(γ)∈M(=L^{G}) であることを示せばいいと思うのですが σはK上同型写像でありますが、γはK上にないので σ(γ)=γ であることをいえません。どのように示せばよいのでしょうか?

  • 代数学の質問

    体Lを体Kの有限次拡大とします。このとき、 Lの有限個のK上代数的な元α1,α2,…αnで、 L=K(α1,α2,…αn)となるように取る事ができる事の証明を教えてください。 α1,α2,…αnがK上代数的なら、 K[α1,α2,…αn]=K(α1,α2,…αn) となる事はわかっています。

  • 次の代数学の真偽について教えて下さい(理由も)

    1.有限個の元からなる巡回群の位数は素数である。 2.同じ素数を位数とする有限群GとG'は同型である。 3.Snの偶置換全体からなる部分集合はSnの部分群である。 4.Snの奇置換全体からなる部分集合はSnの部分群である。 5.群Gの指数2の部分群は正規部分群である。 6.群の準同型写像f:G→G'の像Im(f)はG'の正規部分群だ。 7.群の準同型写像f:G→G'の核Ker(f)はGの正規部分群だ。