- ベストアンサー
- 困ってます
代数学
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- 77tetsuya77
- ベストアンサー率50% (11/22)
仮定より、αのK上の共役元はすべてL^(Gal(L/K))に含まれません。したがって、αのK上の最小多項式f(x)は、K[x]内で一次式(x - α)のみを持ちます。 また、体Lを体Kの有限次ガロア拡大体と仮定しているので、Gal(L/K)は有限群です。したがって、L^(Gal(L/K))の任意の元は、その自己共役元を含みます。 つまり、αは自己共役であるため、Gal(L/K)の元σに対して、σ(α) = αが成立します。そして、自己共役の定義より、αはK上にあるため、α∈Kとなります。
関連するQ&A
- 代数の問題についてです。
以下の代数の問題について教えてください 1.Q(√2、√3、√5)=Q(√2+√3+√5)となることを示せ。 2.[Q(√2、√3、√5): Q]をもとめよ 3.√2+√3+√5のQ上の既約多項式(最小多項式)を求めよ 4.ωを x^2+x+1 の根としたときQ(3√2(以下、これは2の3乗根) 、ω)の自己同型写像であって3√2とωを入れ替えるものが存在するか? 5.F⊂B⊂E:体の塔、 B: f(x)∈F[x]のF上の分解体、 E: g(x)∈F[x]のF上の分解体 とする。 このとき、写像Ψ : Gal(E/F) → Gal(B/F) <σ → σ|B> は全射であることを示せ。
- 締切済み
- 数学・算数
- Gal_Q(x^4+1)がZ_2×Z_2の同型
Gal_Q(x^4+1)がZ_2×Z_2と同型になる理由についてなぜなのかがよくわかりません。 (具体的に言うと、Gal_Q(x^4+1)の構成要素と、その各々の元がZ_2×Z_2の各元にどのように対応しているのかがよくわかりません。) x^4+1=0を計算すると、±(1+i)/√2, ±(1-i)/√2となり、Gal_Q(x^4+1)がQ-同型写像であることと、Z_2×Z_2が{1,α,β,αβ}で構成されるアーベル群であることはわかります。 ※Gal_Q(x^4+1)は体Q上の多項式x^4+1のガロア群 もしもわかられる方がおられれば、お教え頂けないでしょうか?
- ベストアンサー
- 数学・算数
- Gal(L/K)∋σ→σ(α) ∈Xが単射の理由
「単純代数拡大L⊃K(α)⊃Kの場合、ガロア群の位数に関する不等式について|Gal(L/K)|≦[L:K]が成立する」ことに対する証明問題について考えています。 「環と体の理論(酒井文雄著)p110」には、原始元αのK上の最小多項式をf(x)とし、XをLにおけるfの根の集合としたとき、写像Gal(L/K)∋σ→σ(α) ∈Xが単射であると書かれていますが、この理由がわかりません。 (例えば、簡単な具体例L=C,K=Rのときにはわかります。) もしもおわかりになる方がいらっしゃれば、お教え頂けないでしょうか?
- ベストアンサー
- 数学・算数
- 代数学の証明問題がわかりません。
Fを標数p>0で元の数q個の有限体とし、その素体をFоとする。 Fの元はちょうどFо係数の多項式 X~q-X=0 の根全体となっている。 の証明がわかりません。教えていただけないでしょうか。
- 締切済み
- 数学・算数
- 次の代数学の真偽について教えて下さい(理由も)
1.有限個の元からなる巡回群の位数は素数である。 2.同じ素数を位数とする有限群GとG'は同型である。 3.Snの偶置換全体からなる部分集合はSnの部分群である。 4.Snの奇置換全体からなる部分集合はSnの部分群である。 5.群Gの指数2の部分群は正規部分群である。 6.群の準同型写像f:G→G'の像Im(f)はG'の正規部分群だ。 7.群の準同型写像f:G→G'の核Ker(f)はGの正規部分群だ。
- ベストアンサー
- 数学・算数
質問者からのお礼
理解できました。回答ありがとうございます。