• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:原始多項式について)

原始多項式とは?原始多項式の性質と証明方法を解説

tmppassengerの回答

  • ベストアンサー
回答No.2

はい、(2)->(1) (つまり(1)の否定 -> (2)の否定)はそれでいいです。

関連するQ&A

  • 原始多項式について

    原始多項式について下記の問題と証明が合っているか確認したいのですが、 まず、原始多項式f(x)はf(x)=a0x^n+…+an-1x +anにおいてa0, …, an-1, anの最大公約元が可逆元の時を言います。 [問題] 一意分解環Aとその商体Kに対して自然な準同型π: A→K、a→a/1を定め F(x)=π(a0)x^n+…+π(an-1)x+π(an) f(x)=a0x^n+…+an-1x+an と置いた時、F(x), f(x)は原始多項式 [証明] Kは体なのでπ(ai)∈Kは可逆元でその最大公約元も可逆元。従ってF(x)は原始多項式。 またπ(ai)の逆元π(ai)^-1についてπ(ai)^-1=π(ai^-1) より逆元ai^-1がありf(x)も原始多項式である。 以上、考え方が合っているかご教授頂けますと幸いです。よろしくお願いいたします。

  • 原始多項式について

    画像の問題、証明の中で、d=GCD(a0,…,an)、ai=dbi (b0,…,bn∈A)、g(x)=b0x^n+…+bnとおけばg(x)は原始多項式…とありますが、なぜg(x)が原始多項式になるかが分かりません。 dが最大公約元と言っても他にbiで可逆でない公約元があるかもしれないですし、、 何か見落としている点があるかもなので分かる方ご教授頂けますと幸いです。 よろしくお願いいたしますm(_ _)m

  • 原始多項式の証明

    原始多項式の証明 すみませんこの問題がどうしてもわかりません。だれか教えていただけないでしょうか? x^4+x+1(この式はFp[x]に含まれる、p=2)はFp上の4次原始多項式であることを示せ。 まず、既約多項式であることを証明して、原始多項式であることを証明するのだと思うのですが・・・ どうかお願いします。

  • M系列の生成多項式と原始多項式について

    生成多項式や原始多項式に関する様々な投稿を見ましたが、 いまいち知りたいことがわからなかったので質問いたします。 周期 2^n - 1 のM系列を生成するには、{0,1}を体とする n次の原始多項式を生成多項式として用いるということまでは わかったのですが、このn次の原始多項式の求め方について、 いまいち理解できません。 例えば、周期 2^4 - 1 = 15のM系列を生成するには原始多項式           x^4 + x^1 + 1 ー (1) を用いるということですが、             x^4 + x^2 + 1 ー (2) ではM系列を生成できませんでした。 この2式の違いを理解していないことが原始多項式の求め方を 理解できない原因だと思うのですが、どなたかお詳しい方がいましたら、 ご教授お願いいたします。

  • 超高次の多項式の原始関数を求めたいのですが

    f(x) = (n-x)(n-1-x)(n-2-x).....(n-m-x) n: 大きな自然数(例えば1000000など) m: n>mの大きな自然数(例えば100000など) という多項式 f(x)の原始関数を高速に求めるアルゴリズムを考えて います. f(x)を具体的に展開してから原始関数を求めれば簡単だと思い,上記 の式を展開するプログラムを書いたのですが,組み合わせの計算を する必要が生じて,mの値が大きな時に高速に計算できませんでした. 原始関数を直接導出しようと,いろいろ場合分けして考えてみたので すが挫折しました. アドバイス頂けませんでしょうか? よろしくお願いします.

  • 代数学の、多項式の問題を教えて下さい。

    f(X)=X^n+a1・X^(n-1)+a2・x(n-2)+・・・+an∈Z[x]を、最高次の係数が1の整数係数のn次多項式とする。 (1)Aが有理数でf(A)=0を満たす場合、Aは整数である事を示しなさい (2)Aが整数でf(A)=0を満たす場合、Aはanの約数である事を示しなさい。 (3)aは整数でa≠0,2であるとする。X^3-aX-1はQ[X]の既約多項式である事を示しなさい。 という問題です。 困っています。 分かる方、お願いいたします

  • 既約多項式の証明

    p:素数 Zp=Z/(p)とする. 多項式f(x)=a0+a1x+・・adx^d∈Z[x]に対して、 f ̄(x)=a0 ̄+a1 ̄x+・・ad ̄x^d∈Zp[x]として、(a ̄∈Zpは整数aの剰余項) 最高次の項の係数がpで割れない原始多項式f(x)∈Z[x]について、f ̄(x)がZp[x]の既約元であれば、f(x)はZ[x]の既約元である ということを示したいのですが、f(x)が既約元でなくf=ghとおいて示そうとしてるのですが、ごちゃごちゃになっていまいちできません。どのような解法が適切でしょうか。

  • 多項式の最大公約数について

    f(X)とg(X)の最大公約数が1であるとき, ある多項式a(X),b(X)があって, f(X)a(X)+g(X)b(X)=1 とすることができる. とあったのですが,これはなぜなのかを教えていただけますか? よろしくお願いします.

  • 最小多項式

    GF(2^4)の原始元αの最小多項式m1(x)=x^4+x+1とする。 m1(α)=0から、GF(2^4)の元をαのべき表現で表示できました。 ここで、すべての元において最小多項式を求めたいのですが。 講義ノートによると「最小多項式とは、その元を根とする次数最小の多項式」と書いてありました。 そうならば、α^3の最小多項式は(x-α^3)のはず、しかし、 ここで、α^6とα^12を導入し、α^3の最小多項式が m3(x)=(x-α^3)(x-α^6)(x-α^12) となるらしいです。また、一般的にAをf(x)=0の根とすると、A^{2*i}もまた、f(x)=0の根であることは知っているのですが、 なぜ最高次数を3にする必要があったのでしょうか? 最高次数が3以外じゃだめなんですか。例えば(x-α^3)(x-α^6)のように。 また、数の候補としてはα^3、α^6、α^12だけでなく、α^18、α^24、、、、、、、 膨大に候補があがると思います。α^3の最小多項式を考えていますが、 ほぼ無限に候補があがるため、これで、すべての元をあらわしてしまいそうなんですが… こうなると、もはやα^3のペアとして、α^6とα^12のみならず、 どんな元でもよいと言うことにならないのでしょうか? もし、ならないのであれば任意の元をかんがえて最小多項式を作ろうとしても、 このような事態は起きないのか? わからないので是非教えてください。お願いします。

  • GF(2)の体の元を係数とする原始多項式

    GF(2)の体の元を係数とする32次の原始多項式を教えてください 16次以下ならば私の持っている本の付録に付いていたのですが 32次は載っていません 例えば8次ならばx^8+x^4+x^3+x^2+1というふうに よろしくお願いします