• 締切済み

3重積分

info33の回答

  • info33
  • ベストアンサー率50% (260/513)
回答No.2

[1] I=∭_[D] z dxdydz , D={(x,y,z)|0≤x≤1,0≤y≤1+x,0≤z≤x+y} =∫[0,1] dx ∫[0,1+x] dy ∫[0,x+y] zdz =∫[0,1] dx ∫[0,1+x] (1/2)(x+y)^2 dy =(1/2) ∫[0,1] (1/3)(7x^3+12x^2+6x+1) dx =(1/6) [(7/4)x^4+4x^3+3x^2+x] [0,1] =(1/24) (7+16+12+4)=39/24 =13/8 [2] I=∭_[D] z dxdydz , D={(x,y,z)|0≤x≤1,0≤y≤1-x,0≤z≤1-x-y} =∫[0,1] dx ∫[0,1-x] dy ∫[0,1-x-y] zdz =∫[0,1] dx ∫[0,1-x] (1/2)(1-x-y)^2 dy =(1/2) ∫[0,1] (1/3)(-x^3+3x^2 -3x+1) dx =1/24

関連するQ&A

  • 3重積分

    1. I=∭_D〖y dxdydz ,〗 D={x≥0,y≥0,z≥0,2x+3y+3z≤6} 2. I=∭_D〖ysin(x+z) dxdydz ,〗 D={0≤x≤π/2,0≤y≤√x,0≤z≤π/2-x} 3.  I=∭_D〖xy+yz+zx) dxdydz ,〗 D={0≤x≤1,0≤y≤x,0≤z≤y} 回答が知りたいです。

  • 3重積分

    (1)I=∭_D〖x dxdydz 〗 D={x^2+y^2+z^2≤a^2} (2)I=∭_D〖x dxdydz 〗 D={x^2+y^2+z^2≤a^2 ,x≥0,y≥0,z≥0} 回答が知りたいです。

  • 重積分

    重積分について、問題を解いてください。 形状D物体の密度がρ(x,y,z)で与えられているとき、その物体の質量Mと重心(x_g,y_g,z_g)は M=∮∮∮D ρ(x,y,z)dxdydz (x_g,y_g,z_g)=(1/M)(∮∮∮D xρ( x,y,z)dxdydz,∮∮∮D yρ(x,y,z)dxdydz,∮∮∮D zρ(x,y,z)dxdydz) で求めることができる。このことをふまえて、以下の問いに答えよ 1.半径Rの一様な密度を持つ半球の重心を求めよ。ただし、原点を中心とする球のうち、z≧0の部分のを考えること。 2.底面の半径R、高さhの一様な密度を持つ円錐の重心を求めよ。ただし、図のように円錐の頂点を原点にとると、図のようにz軸からの距離r=√(x^2+y^2)とzが、r=Rz/hの関係になることを利用すること。 途中式もお願いします。

  • 数学 積分

    (1)I=∬D tan[{π(x^2+y^2)}/4]dxdy D:0≦x^2+y^2≦1 (1)は極座標変換を用いること (2)I=∬D zsin[{π(x^2+y^2+z^2)}/2]dxdydz D:0≦x^2+y^2≦1,0≦z≦1 (2)は円柱座標変換を用いること (3)I=∬D 1/(x^2+y^2+z^2)^(1/2)dxdydz D:1≦x^2+y^2+z^2≦16,x≧0,y≧0,z≧0 (3)は球面座標変換を用いること 回答、よろしくお願いします

  • 3重積分

    ∬∫_D 1/√1+(x^2+y^2+z^2)3/2 dxdydz D:x^2+y^2+z^2≦1,x≧0,y≧0,z≧0 極座標変数を利用して積分値を求めよ 風邪で授業受けれなくて 解き方が全くわかりません!!

  • 重積分

    3重積分の問題なのですが D={(x,y,z)∈R^3|x+y≧0} ∫∫∫_D (1/(1+x^2+y^2+z^2)^2)dxdydz という問題なのですが, どなたか解説お願いします。

  • 重積分

    重積分 ∫∫∫log(a*sqrt(x^2+4y^2+9z^2))dxdydz D={(x,y,z)| 1<x^2+4y^2+9z^2<4} (a>0) この問題をどう進めていいのかわかりません。解答の導出法の解説をお願いします。

  • 3重積分

    (1) I=∭_D〖(yz+zx)xdxdydz 〗 D={x^2+y^2+z^2≤4 ,y≥0,z≥0} (2) I=∭_D〖2zx xdxdydz 〗 D={0≤x≤1,0≤y≤x,0≤z≤√(2-x^2-y^2 )} 回答が知りたいです。

  • 3重積分の問題

    ∫∫∫_V x dxdydz V={(x,y,z)|0<=x<=y<=1 , 0<=z<=x+y} という問題の解き方を教えてください。 D={(x,y)| x<=y<=1 , 0<=x<=1} 0<=z<=x+y として zから積分していったら答えが5/24となりました。 しかし3/8とならなければならない問題です。 教えてください。

  • 3重積分

    ∫∫∫ {y/√(x^2+y^2)}dxdydz 積分範囲 D: x^2+y^2+z^2≦4 x^2+y^2≦1 y≧0 この問題を円柱座標に変換して解くと (8-3√3)×4/3 となりました。 球座標変換をして解く方法を教えてください