• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:正弦関数の直交性)

正弦関数の直交性

このQ&Aのポイント
  • フーリエ解析における正弦関数の直交性についてご質問です。
  • 質問文章では、フーリエ解析の解説に不適切な表現があると感じています。
  • 具体的な例として、∫[-∞→∞]sin(2x)sin(3x) dx = 0 について問題がないのか疑問を持っています。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8034/17167)
回答No.1

話の流れとしては∫[-π→π]sin(2x)sin(3x) dx = 0であれば ∫[-∞→∞]sin(2x)sin(3x) dx = lim[k→∞] ∫[-kπ→kπ]sin(2x)sin(3x) dx = lim[k→∞] k∫[-π→π]sin(2x)sin(3x) dx = lim[k→∞] k*0 = 0 と言ってるんだよね。

musume12
質問者

お礼

あ! なるほど。その表現ならなっとくですね。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 三角関数同士のの掛け算の周期について

    sin(mx)×cos(nx)とsin(mx)×sin(nx)やcos(mx)×cos(nx)のグラフの周期が2π(m=nの時はπ)だとどうやってわかるのかを教えてください。 お願いします。

  • フーリエ係数の公式

    フーリエ級数の係数 an=(1/π)∫f(x)cos(nx)dx, bn=(1/π)∫f(x)sin(nx)dx 積分区間:0≦x≦2π の導き方を詳しく教えてください。 フーリエ展開の定義式の両辺にcos又はsin(mx)を掛け、両辺を積分するという所まではわかります。 そこから先を”詳しく”お願いします。

  • 数学の問題で困っています。

    数学の問題で困っています。 ちなみに私は数学が苦手です。 問,次の関数を-πからπまで定積分しなさい。 ※ただしm,nは自然数。 ※(m=n,m≠nの場合に分けて考える) ※(積を和になおして積分しなさい) 1.f(x)=sin(mx)\sin(nx) 2.f(x)=cos(mx)\cos(nx) 3.f(x)=cos(mx)\sin(nx) 解き方を出来れば詳しくお願いします。 誰かお願いしますm(._.)m

  • 3sin(2x) のフーリエ展開

    「3sin(2x) を [-π,π]でフーリエ展開しなさい。」という問題があったのですが、                  ∞ フーリエ級数 (1/2)*a_0 + Σ[ a_n*cos(nx) + b_n*sin(nx) ]                  n = 1 のa_0 とa_n と b_n について、     π a_0 =∫3sin(2x) = 0     -π      π a_n =∫3sin(2x)cos(nx) = 0 (3sin(2x)cos(nx)は偶関数だから0)     -π  と、ここまでだしたのですが、どうしても次の、     π b_n =∫3sin(2x)sin(nx) = 0     -π  を求めることができません。このb_nの求め方を教えてください。 そもそもこれはフーリエ級数で表すことができるのでしょうか?

  • 数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

    宜しくお願い致します。 [問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。 (2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。 [(1)の解] <1,cos(nx)>=∫[0..π]cos(nx)dx=0 次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx ∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0 となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交 [(2)の解] この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して, a_0=2/π∫[0..π]f(x)dx は上手くいったのですが a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから 2/π∫[0..π]f(x)cos(nx)dxに変形できません。 どのようにして変形するのでしょうか?

  • フーリエ級数展開の問題

    フーリエ級数展開の問題 cを実数の定数とし、fは周期関数2πの関数で区間[-π,π)において f(x)= (c-2)(x+π/2) :-π<=x<0 (2c-3)(x-π/2):0<=x<π であるとする。この時のフーリエ級数展開 a_(0)/2+Σ[n=1,∞]{a_(n)cos(nx) + b_(n)sin(nx)} について各問に答えよ (1)関数fが偶関数になるような定数cの値を求め、その時のフーリエ係数a_(1)の値を求めよ。 切片が同じで、傾きが逆になればいいので、 (c-2)=-(2c-3)と式を立てて c=5/3 a_(n)=1/π∫[-π,π]f(x)cos(nx) dx -π<=x<0の時と、0<=x<πの時とを分けて積分 a_(n)=1/π{∫[-π,0](-x/3-π/6)cos(nx) dx + ∫[0,π](x/3-π/6)cos(nx) dx} n=1の時を求めればいいだけなのでn=1を代入して a_(1)=1/π{∫[-π,0](-x/3-π/6)cos(x) dx + ∫[0,π](x/3x-π/6)cos(x) dx} 式の∫[-π,0](-x/3-π/6)cos(x) dx の部分を計算 部分積分で計算し、 ∫[-π,0](-x/3-π/6)cos(x) dx=[(-x/3-π/6)sin(x)-cos(x)/3][-π,0] =-1/3-1/3==-2/3 ∫[0,π](x/3-π/6)cos(x) dx の部分を同じく計算 ∫[0,π](x/3-π/6)cos(x) dx=2/3 よって a_(1)=1/π{-2/3+2/3}=0 となってしまいました。0となり不安です間違っている気がすごくします。これで合っているんでしょうか? あと、この次の小問(2)で (2)関数fが奇関数になるような定数cの値を求め、その時のフーリエ係数b_(1)の値を求めよ。 という問題があるのですが、これはcの求め方からして分かりません。 存在しない気すらします。どのように求めればいいんでしょうか?

  • 三角関数の積分について

    ∫sin^2(x)cos(nx)dx n=0,1,2,3・・・ ∫sin^2(x)cos(nx)dx n=0,1,2,3・・・ 積分区間は0~2π という問題なのですが、どうやったらいいかまったくわかりません。 よかったら指針などでもよいのでご教授お願いします。

  • Σ[n=1..∞]1/n^4=π^4/90を求める際,どの正規直交関数系を使えばいいのかの選択基準は?

    こんにちは。 [問]f(x)=x^2(x∈[-π,π])のフーリエ級数を求め,それを使ってΣ[n=1..∞]1/n^4=π^4/90を示せ。 [解] f(x)(=x^2)π^2/3+4Σ[k=1..∞](-1)^kcos(kx)/k^2=π^2/3-4cosx+cos(2x)-4/9cos(3x)+… これを正規直交関数{u_k(x)}={1/√2,cosx/√π,sinx/√π,cos(2x)/√π,sin(2x)/√π,…}を使って書き直すと 1/√(2π)・√(2π)・π^2/3+cosx/√π(-4√π)+sinx/√x・0+cos(2x)/√π・1+sin(2x)/√π・0+cos(3x)/√π・(-4√π/9)+… …(1) 従って,a_0=√(2π)/3,a_1=-4√π,a_4=0,a_5=-4√π/9,… 従って(1)は Σ[k=0..∞]a_k^2=a_0^2+a_1^2+a_3^2+a_5^2+…=2π^5/9+16π+π+16π/81+…=2π^5/9+16Σ[k=1..∞]1/k^4 …(2) 一方,∥f(x)∥^2=∫[π..-π](f(x))^2dx=∫[-π..π]x^4dx=2π^5/5 …(3) (2)と(3)をParsevalの等式「∥f(x)∥^2=Σ[k=0..∞]a_k^2」に代入して2π^5/5=2π^5/9+16πΣ[k=1..∞]1/k^4 ∴Σ[n=1..∞]1/n^4=π^4/90 の問題についてですが正規直交関数は色々あると思いますがこの問題では特に {u_k(x)}={1/√2,cosx/√π,sinx/√π,cos(2x)/√π,sin(2x)/√π,…} を使えばいい事とどのようにして知る得るのでしょうか?

  • 積分の計算ですが…

    I_n =∫(0~Π/2) {sin(nx)/sinx} dx (書き方が合ってるか分かりませんが" _ "の後ろのものは右下に付いてる小さいやつです。名前知らなくてすみません)、とするとき I_(2n+2) -I_(2n) の値を求めよ という問題があって、答えが0になるはずなんですけど、なりません。 一応やったのがこうです。 I_(2n+2)-I_(2n) =∫(0~Π/2){sin(2nx+2x)/sinx}dx-∫(0~Π/2){sin(2nx)/sinx} dx =∫(0~Π/2)[{sin(2nx+2x)-sin2nx}/sinx]dx   sinA-sinB= 2sin{(A-B)/2}cos{(A+B)/2}より =∫(0~Π/2) {2 sinx cos(2nx+x)}/sinx dx =2∫(0~Π/2) cos(2nx+x) dx   t=2nx+xとおくとdx=dt/(2n+1)   x:0→Π/2 ⇒ t:0→nΠ+Π/2 =2/(2n+1)∫(0~nΠ+Π/2)costdt ={2/(2n+1)}*[sint](0~nΠ+Π/2) ={2/(2n+1)}*sin(nΠ+Π/2) となってしまいます。どうすれば良いでしょうか? お願いします。

  • 積分の問題です。

    積分の問題です。 下では積分区間をaからbなら∫[a,b]、絶対値を|a|、累乗をa^xとしています。 見辛くて申し訳ないです。 問 lim[n→∞]∫[0,π]x^2|sin(nx)|dxを求めよ 私の解答を書くので、どこが間違っていてるのか、どうすべき教えてもらえないでしょうか? 解) nx=kπとなるとき、|sin(nx)|=0 ∴X(k)=kπ/n (k=1,2,…,n)とすると、 ∫[0,π]x^2|sin(nx)|dx =Σ[k=1,n]∫[X(k-1),X(k)]x^2|sin(nx)|dx と表せる ここで、X(k-1)≦X≦X(k)において、 {X(k-1)}^2≦X^2≦{X(k)}^2 より、各辺に|sin(nx)|をかけて {X(k-1)}^2|sin(nx)|≦X^2|sin(nx)|≦{X(k)}^2|sin(nx)| また、|sin(nx)|の周期性より、 ∫[X(k-1),X(k)]|sin(nx)|dx =∫[0,π/n]sin(nx)dx =[0,π][-cos(nx)/n] =2/n さらに、ここでy=|sin(nx)|x^2 のグラフを考えて 面積で不等式を作ります。 本来は図示していますが、ここでは式のみを書きます。 {π{X(k-1)}^2}/n <∫[X(k-1),X(k)]x^2|sin(nx)|dx <{π{X(k)}^2}/n ∴Σ[k=1,n-1]{π{X(k-1)}^2}/n <Σ[k=1,n]∫[X(k-1),X(k)]x^2|sin(nx)|dx <Σ[k=1,n]{π{X(k)}^2}/n 上の不等式の左側を計算すると、 {(1-1/n)(1+1/n+1/n^2)π^3}/3 nを∞に飛ばすと (π^3)/3 右側も同じになるので(実際は計算していますが省略します) はさみうちの原理より (与式)=(π^3)/3 これが私の解答なのですが、実際は(2π^2)/3になるのです。 どうかよろしくお願いします