• 締切済み

物理学の矛盾3

続3 物理学の矛盾 空洞放射 今回の質問は波動の位相の一致はどのような現象をひきおこすか、あなたのアイデアを求めます. 下記のヒントを読んで(1)から(6)までの現象を含めてあなたのアイデアを提案して下さい. 物理学にはわたしのQ&Aの物理学の矛盾のかずかずシリーズのとおり学理にいろいろな矛盾があります. (1)角運動量の保存則の矛盾 (遠日点で速度を減じたら、周回運動の楕円軌道を辿らず、双曲線にも放物線にも楕円にもならない軌道もあり?) (2)確率波動の性質とファインマンの経路積分の特質の矛盾 (3)最小作用の原理が、天下りの原理とはいえず、特定の現象の疑いがある矛盾. (4)エーテルの否定と重力波の有限伝搬速度の矛盾 (5)地球の公転軌道の輪と重力の伝達速度の矛盾 (6)単孔の光干渉実験に整数個しかない光路の矛盾 今回は(8)にあたる謎です. (8)空洞放射にも矛盾の謎があります. その謎は上記の(1)から(6)までの謎と(6)フラウンホーファー回折までに通暁する、隠れた現象のしわざです. 隠れた現象とは位相同期の存在です. ここで私のいう位相同期とは、空間中の一点に振幅ゼロまたは最大となるように波動の位相が揃う現象です. たとえば(6) フラウンホーファー回折にも空間中の一点に振幅ゼロとなるように波動の位相が揃う現象があります. フラウンホーファー回折はただひとつの穴だけで、レンズも鏡もありませんが、干渉が光波に置き振幅ゼロとなる空間が周期的に光波に発生します. 周期的なことから位相の揃った光波が生まれています. その波動は光波、電子波と呼ばれる物質波です. 空洞放射の光波にも、その位相同期が起きています. そのことが教科書には抜け落ちています. 空洞放射の中には高熱のためエネルギー準位間を正規分布する確率をもとに遷移する電子の放射光により発光した物体があります. 炉も物体も決して球形の形状がありません. 炉も物体も決して立方体の形状がありません. そして物理学には実態の測定値をもとに演算する約束があるのですが、空洞放射には球と立方体の性質が数式に含まれ矛盾しています. そればかりか、球と立方体の重心点が同じ一点の空間に存在するという前提条件を数式に含めています. 微小な厚みの球殻の中に含まれた立方体の各格子点に振動子があるかのような計算を空洞放射の数式では行います. しかし球と立方体の重心点が同じ一点に位置する実態は実験環境のどこにもありません. 実態から演算する約束を反故にした矛盾があるのです. 重心のそれぞれが一点に集まらねば、当然演算中の振動子の数は異なります. そこで球と立方体の重心点が同じ一点に位置することを再度波動の現象から見直すと、おもしろいことにそれは波動の位相の一致です. だから球形の界面境界の共鳴器内部の定在波と、立方体形状の界面境界の共鳴器内部の定在波とが同一空間に重なり存在する現象が空洞放射です. そのことを教科書のどこにも書いてありません. 空洞放射にもフラウンホーファー回析のように空間中の一点に振幅ゼロとなるように波動の位相が揃う現象があります. 位相が揃うと何が起きるでしょうか. このとき空洞放射では立方体という面数の少ない多面体から、正多面体の面数無限大の極限の球というトポロジーへ、エネルギーを相互に転送しているとみなせます. 空間のトポロジー間のエネルギーの分配が起きています. エネルギーの転送が多面体に起きるのならば波動のあいだのエネルギーの分配もおきるはずです. ここで波動の性質からエネルギーの転送をみなおすと、振動数の異なるふたつの振動が、互いの振動数の公倍数の振動をとおしてエネルギーを分配するはずです. そのとき公倍数の条件から、たがいの波動の振動数は二つのあいだの比に表すと、必ず有理数です. そこで有理数を探して太陽系に目を移してみましょう. Q&A「公転と自転の周期に尽数関係の起きるわけ」に詳しく書きましたが、太陽系の星の公転と自転に尽数関係と呼ばれる周期の比が有理数となっています. そしてケプラーの面積速度一定の法則では最小角速度と、最大角速度の比がケプラーによると彼が観測した惑星には和音関係の和声になっていると表現されています. 和音には公倍数があり、ギターなどの身近な弦楽器で、振動エネルギーの分配を観察できます. エネルギーが尽数によって分配され、そして位相の同期が起きています. ここまでは事実の羅列です. 今回の質問は波動の位相の一致はどのような現象をひきおこすか、あなたのアイデアを求めます. 私のアイデアと同じになるか否か楽しみです.

みんなの回答

  • tetsumyi
  • ベストアンサー率26% (1857/7093)
回答No.1

基本的に物理学に矛盾は存在しない。 何故なら物理とは実際の物理現象をどのように理解するかと言う問題であり、矛盾と言うより現在の理論と説明が間違っているだけで矛盾と考えるなら別の理論を提唱して改めれば良いだけです。 光に関して言えば光は時間的、電磁的なパルスであって相互に干渉する事は起きるはずがなく光が広がりを持つことで説明できます。

masaban
質問者

お礼

ご回答ありがとう tetsumyi 様のおかげでこの設問が、すぐに消されずにOKWAVE Q&Aの存在するその寿命と同じ期間この世のWEBに残り探せるようになりました. tetsumyi 様>現在の理論と説明が間違っているだけで矛盾と考えるなら別の理論を提唱して改めれば良いだけです。 別の理論を提唱する仕組み、議論する仕組みがいまの世界中のどこにもありません. だからtetsumyi 様のご提案は不可能です. 理論が根底から覆る時には学理の再構成を根底から先端枝葉まで図らねばなりませんが、その作業の以前に、新しい芽を旧来のものさしからの価値で学者は価値を測ろうとします. 何の果実か木の実か分からぬ生まれたての若芽に、その利はなにかと問う研究の経営姿勢も世界中に蔓延しています. その問いに応えたら、その答えは大ぼら吹きと呼ばれるしかありません. ためしに応えてみましょう. 錬金術ができます. 無限のエネルギーを人類が得るのです. 人類は重力を支配するでしょう. 大法螺でしょう 話を「提唱」に戻します. たとえば学会には分科会、分野という細分があります. 「提唱」の論議を学会内に諮るには分野の分科会に発表する事になり、それ以外の発表方法はありません. 分野の分科会が無いと発表できません. 論文の査読は分野が異なることから門前払いを受けます. たとえば1/fゆらぎの分科会は日本物理学会には現在ありません. 常温核融合の分科会も日本物理学会、応用物理学会にはありません. ファインマンの経路積分に関する分科会もありません. このように世間の流行に分科会の存在寿命は流されています. 私の研究は1/fゆらぎ、常温核融合、ファインマンの経路積分に関係がありますが、どのテーマの流行時期にも遠いのです. おまけに物理学にはそこかしこに矛盾があります. それに気が付かないとは困ったものです. 哲学の論理構築手段において記憶や洗脳を基準にした判断には価値がありません. 哲学の論理構築手段において事実と論法論理を基準にした判断には価値があります. 物理学に矛盾が無いとしか思えぬなら、その判断は事実や論法論理を基準にした判断がなされていないのです.

masaban
質問者

補足

物理学には多数の矛盾が事実として存在する. (1)角運動量の保存則の矛盾 (遠日点で速度を減じたら、周回運動の楕円軌道を辿らず、双曲線にも放物線にも楕円にもならない軌道もあり?)それと別にもうひとつ角運動量保存則の条件に外力があってはならないのに、外力が関わる、引力の働く公転運動と外力の関わらない独楽の回転と角運動量保存の原理に同列に並べる矛盾がある. 物理学に矛盾がある. (2)確率波動の性質とファインマンの経路積分の特質の矛盾 確率波動なら期待値が相殺しあうスペクトルはファインマンの経路積分に存在しない.ところが確率波動なのにファインマンの経路積分に相殺の成分がある. 物理学に矛盾がある. (3)最小作用の原理が、天下りの原理とはいえず、特定の現象の疑いがある矛盾. 最小作用の原理は起き上がりこぼしの復元力のグラフに表れる極値と同じに運動の軌道が楕円曲線と軸対称鏡映折れ線から軌道を復元させる強力な作用をしている性質をファインマンの経路積分に表わす. 物理学に矛盾がある. (4)エーテルの否定と重力波の有限伝搬速度の矛盾 波動の伝搬に媒体となる歪みは重力波では場と呼ばれ、万有引力ではエーテルと呼ばれる. 波動の伝搬媒体の呼び名を変えただけだ. 万有引力の媒体は存在しないと結論されている. そして重力波の測定装置はエーテルの測定装置と同じ原理を用いている. 物理学に矛盾がある. (5)地球の公転軌道の輪と重力の伝達速度の矛盾 8分間をかけて地球に太陽の光は光速で伝搬する. 重力の伝搬速度は光速と同じだという. ところが万有引力が適切に届くには無限大の速度が必要なのにタイムラグの8分がある. 公転軌道はタイムラグにより維持できない. 物理学に矛盾がある. (6)単孔の光干渉実験に整数個しかない光路の矛盾 単孔で正面のスクリーンに干渉の明暗縞を発生するフラウンホーファー回折は、球面波の回り込みの回折ではなく、直進波が単孔の面に一様に同じ輝度で満たされている時に起きる. 面内の特定の光が届くわけではない. 単孔の面をとおった光は、その面の位相は特定値ではない. ランダムな位相を持った光から、特定の揃った位相が必要なはずの明暗縞模様の干渉縞が生じる. 物理学に矛盾がある. (8)空洞放射にも矛盾の謎があります. 黒体放射、空洞放射の実験装置には、立方体や球体が含まれていない. ところが黒体放射、空洞放射の理論式には立方体や球体が含まれている. 立方体に同心の球体が同心に並ぶ根拠が無いのに理論式には同心で並んでいる. 理論式は実存の観測物から成り立つと物理学は要請するが存在しない物体が組みこまれている. 物理学に矛盾がある. 数々の矛盾の事実がある. 物理学に矛盾が無いというのは夢想でしかない.

関連するQ&A

  • 数学の裏打ちができる物理とできない物理

    物理学を習うと数学で現象を説明し理解するための論理を組み立てますが、原理とか定理とか法則と呼ばれるものには、数学的に不合理や矛盾のある事例があるようです。それらを探したいと思います。 問(1)から(7)まで教えてください。 (1)数学の論理構造と矛盾する原理定理法則現象をご存知でしたら、教えてください。  たとえば一つ事例をあげましょう。  数学では、すべてのひずみ波をフーリエ積分で記述できることが証明されています。  たとえば、正弦波では振動数と振幅と位相が波動の要素ですが、正弦波でなくとも任意の波動をいくつか線形加算するとひずみ波を構成することができ、そのひずみ波はもう一度フーリエ積分形から正弦波だけの積分形でも記述できるわけです。  そしてひずみ波の振幅は0でないあたいです。常に振幅が0であるなら、存在しない波動という意味から、フーリエ積分の証明に矛盾します。常に振幅が0ならフーリエ積分を証明した意味がないのです。  (2)さてどのような場合の現象に振幅値が0になる現象があるでしょう。想像し教えてください。  一般にひずみ波の振幅値は多様な値をとることでしょう。  (3)その値が特定値をとるとしたらどのような現象があるのでしょう。想像し教えてください。  ところで物理学ではファインマンの経路積分という理論がありますが、このひずみ波の振幅値が常に最少作用の経路積分に一致すると主張しています。  特定値に一致する現象だから(3)に同一のグループに属する現象でしょう。  しかし特定値の振幅のひずみ波ができぬなら、ファインマンの経路積分はフーリエ積分の証明に矛盾します。フーリエ積分は多様な振幅値のひずみ波動せるのに特定値となってしまっては、フーリエ積分の証明と矛盾するのです。  このファインマンの経路積分は最小作用の原理を発想の基礎にしているそうです。 すると最小作用の原理は数学の論理に矛盾していることになります。  (4)最小作用の原理が数学的に不合理な理由を教えてください。  (5)最少作用の原理に従う現象のグループの特徴と、理由を教えてください。  (6)2つめの数学の裏打ちの無い物理の事例は、空洞放射です。空洞放射の現象には座標の中心に同軸の立方格子と同軸の球殻が数学に含まれますが、実際の実験道具には立方格子も球殻も存在しません。物理学は測定値と構造の実条件だけから数式を組み立てる論理が信条です。この物理の基本に空洞放射の式は論理構造が矛盾しています。この矛盾の有無を教えてください。 (7)空洞放射に立方格子と同軸の球殻が表出することは、最小作用の原理と同じ現象グループであるのかないのかご意見を教えてください。

  • 干渉や回折の単色光の位相同期

    単色の光源から平行に並んだスリットを通してスクリーンに明暗縞をする実験や 単孔をとおしてスクリーンにあたった光が明暗縞を作る実験があります. それらは2重スリットの干渉、フラウンホーファー回折という現象を試す実験です. 実験の光源はレーザー光でない場合があります. レーザなら光波の位相は揃って、同期した波動があります. ところが単色光はその位相の同期は得られていません. 干渉と回折を生じた時その光源とした単色光は光源で光波の位相が時間的にランダムな光波の集合でしょうか、それとも同じ位相がある単色光が集まった同期した位相の光源や光波なのでしょうか? 質問1.位相のランダムな光源なのか、同期した位相の光源、どちらなのか教えて下さい. 干渉と回折の論理によればたとえば位相が揃わない光波からは、もし同じ位置で同時に光りが重ね合せられたとしても、スクリーン上に暗くなる偏りは生じないはずです. たとえばサーチライトの多数を何灯も使って同じスクリーンの場所を照らしたとすれば、そこのスクリーンの明るさは重ねた灯の影響で暗くなるようなことは決して起きません. そして実験には波長の構成が一つでなく、白色光の干渉回折の実験すらあります. すると回折や干渉が起きた光波には位相の同期がスクリーンの周囲に存在したことになります. まさにフラウンホーファー回折のとき光波には位相の同期がスクリーンの周囲に存在したことになります. 単なるひとつの孔をとおした光からスクリーンに縞模様が生まれる現象があり、フラウンホーファー回折と呼ばれています. 質問2. フラウンホーファー回折の単孔には光波の位相を揃え同期させある空間に特定の位相を偏在分布させる能力があるのでしょうか.それともそんな能力がないのでしょうか. 質問3. 単孔の波動の位相を揃え同期させる能力は現代の光学と物理学の学説で見落とされているのでしょうか.きちんと取り上げられているでしょうか?どちらでしょうか?

  • 物理学の矛盾のかずかず

    物理学は定義と論理が骨組みのはずです. ところが複数の矛盾が物理学にあります. 下記の矛盾を解決する現象を提案してみてください. 矛盾どうしには関係があり、矛盾どうしにはつながりがあるようです. まだ認識されていない現象がその矛盾の陰に隠れているはずです. 矛盾を一気に解決する現象を考え、私に提案してみてください. ご提案を待っています. 物理学にはかなり矛盾した状況が多数存在します. たとえば法則、原理は天下りに規定するはずでした. 数理では証明できないのが法則です. しかしどうでしょう. (1)角運動量の保存則の矛盾 たとえばケプラーの面積速度一定の法則は天下りの法則ですが、公転運動における角運動量の保存の法則は、天下りではなく、https://physnotes.jp/mechanics/angular-momentum-conservation/の記事の中心力の件のように演算によって導かれてしまいます. 演算によって導かれるので、演算で証明できるなら角運動量の保存の法則は法則ではないはずです. 実際、万有引力という求心力が突然消滅すると思考実験すれば、回転運動は続かず、一瞬にして直進の慣性運動の性質から惑星は直進するはずです. 要するにただの運動現象を公転運動の惑星に対して角運動量の保存というあたかも法則のような呼び方をして、その呼び方のために人類の目から隠されてしまった重要な現象が存在します.(興味を引くはずです、この現象のあらましは最後に述べます.)  惑星の公転と同じように円周軌道を錘に描かせて、錘に回転運動の慣性が連続しているか試せます.  振り子を作って錘を支点の高度まで持ち上げた後、円軌道を描いた運動をさせ、錘の鉛直点で振り子の糸を切断します.すると錘は水平方向に直進飛行しやがて放物線を描いて床面に接地します. 錘に回転の慣性が続いていれば、放物線とは異なる軌道を描くはずですが、水平に打ち出した砲弾の落下と何ら変わらぬ放物線を錘の軌道が描くのです.  したがって錘の角運動量は保存されていません.  そして多くのWEBの記事に角運動量の保存則は中心力が存在する限り成立する法則のように語られていますが、独楽に働く回転の慣性での角運動量の保存に中心力などありません.  中心力など角運動量の保存には無用なのです.  したがっていろいろと法則の要件を欠いているので公転運動の角運動量の保存の法則は存在しません.  遠日点側で、距離に反比例した力よりももっとはるかに弱い、二乗の反比例の力ですから、一段強い力の状況でも周回を戻れぬ運動なので、公転の周回は維持できません.  演算通りに角運動量が定値を取るためには、遠日点側で地球を太陽に引き戻すには、もっとほかに運動を補う力とエネルギーが必要です. (2)確率波動の性質とファインマンの経路積分の特質 確率波動の信号を集めてフーリエ変換した後、そのデータを周波数特性グラフに描くと、確率波なら必ずホワイトノイズの特性が見つかります. ホワイトノイズでは、どの周波数でも同じ振幅が得られます. それは振幅の期待値がどの周波数でも等しいという特性です. 振幅がゼロとなる振動はホワイトノイズにはありません.  ところで波動には同じ振動数(周波数)成分ならば位相の交角を持ったベクトル複数とみたてた、加算合成や分解ができます. 異なる振動数(周波数)でも同じ成分でも波動は干渉し、干渉は加算演算によって表現できます. ところでファインマンの経路積分は上記の確率波動のフーリエ積分の演算と同じです.  たとえば光の鏡面反射にファインマンの経路積分をしたとします.光路断面にした平面で鏡面反射を描けます.その光路は2つの線分となり、線分同士が鏡面の同一点に交わり、鏡面の法線(鉛直線)に同じ大きさの交角を描きます. ファインマンはこの線分上を辿る経路の経路積分だけで、確率波の積分値を構成すると主張しています.ファインマンの経路積分では、その他の経路の演算成分が相殺すると主張しています. 相殺の発生こそがファインマンの経路積分の特質です.  ところが振幅がゼロとなる振動はホワイトノイズにはありません.  だからファインマンの経路積分には確率波動の性質に反する性質があります.    いいかえてみると中心極限定理という確率の数理に反する特質がファインマンの経路積分か、もしくは物理現象の全てにあるのです. (3) 最小作用の原理が、天下りの原理とはいえず、特定の現象の疑いがある. 最小作用の性質が現象であれば、原理ではありません. ファインマンの経路積分の特質は最小作用の単なる性質にすぎない疑いがあります.  「最少作用の原理」は作用という確率波の振幅を縦軸に横軸に時間(距離)のグラフ上でプロットすると変曲点、微分の極値ゼロとなる座標を選んで運動の軌道が描かれる性質です.  このグラフには起き上がりこぼしと、船舶の姿勢に表れる復元力と似た性質があります.  要するの最小作用の原理とは空間に復元力の働くポテンシャルの偏在があることを意味する現象です.  それはどんな現象でしょうか.  「空間に復元力の働くポテンシャルの偏在」のおきた一つの事例をご案内します. https://annex.jsap.or.jp/hokkaido/yokousyuu39th/B-29.pdf 粒子が整列したポテンシャルの偏在の空間に捕捉された写真がご覧になれます. もしトンネル現象がこの空間のはじに発生していると、物質波の位相の同期が起きている事になります. 実際、この実験条件では電極面で電子波がトンネル現象を起こしています.  位相の同期があると物質波の波数のばらつきは減るはずです. ばらつきが減ると、力の変曲点、力がゼロとなる極値を示す復元力が予想できます. 復元力はF=hdk/dtとなることが下記の論文の中に紹介されています. 電子情報通信学会総合大会BS-6-3「最小作用の原理と電子波の同期に則った宇宙スケールのフライホイールを用いたエネルギーの貯蔵」    (4)エーテルの否定と重力波の有限伝搬速度の矛盾 マイケルソンモーレーの干渉実験でエーテルは存在しないと証明されました. ところがいま同じ原理の測定器で重力波を測定しようとしています.  測定できたとしたら、エーテルを重力波という名前にして観測したことになります. (5) 地球の公転軌道の輪と重力の伝達速度 波動の伝搬には空間に偏在分布した密度と、距離に比例した遅れとその干渉現象が要件です. 重力波にもその要件が満たされねばなりません. 地球と太陽の間の万有引力は重心間を結ぶ線上の向きに働きます. ところが光速度とおなじ伝搬速度で引力が届いたとしたら、引力の向きは正しい向きになく、遅れてしまいます.  地球と太陽を結ぶ線と万有引力の線の間に交角が発生します. 万有引力を直角三角形の斜辺として、力のベクトル成分に分解すると、地球の運動を減速する成分と、円周運動に不足した求心力の成分に分かれます. すると等角螺旋という軌道運動を地球の軌道が描くことになります. しかし地球の運動は減速していません. 地球の軌道は等角螺旋ではありません. 地球の公転径は等角螺旋軌道のように伸びていきません.   したがって公転における角運動量の保存則を補い、等角螺旋を起こさせぬエネルギーが地球の公転運動に必要です.  重要な運動とはまさにこのことです.  太陽の放射流がトンネル現象を起こして空間に偏在分布するポテンシャルを発生し、球座標系にポテンシャルの等高線を描いていると予想できるのです. (6) 単孔の光干渉実験に整数個しかない光路の矛盾 光の通り道は一点に定まらないという量子力学の前提に反した論理で単孔の干渉実験では整数個の光路が説明に用いられます. 2重スリットの光の干渉実験や2重スリットの電子線の干渉実験は有名ですが、単孔でも光は干渉します. 2重スリットは手品師の手技とにた、目くらましなのです. たとえば単孔の光の干渉はWEB記事のように孔の縁と縁の間に整数個の計算点を用いて演算します. http://www.wakariyasui.sakura.ne.jp/p/wave/kannsyou/tannsuritto.html 孔の中のどこを横断するか、光路を光子は一様な確率で通り抜けたはずです. 整数個の点だけをちょうどとおる光はむしろ少数派のはずです. おまけに整数個をさだめて決める有意な論理は存在しません.

  • 光の干渉に2重スリットと単色光が不要なわけ

    光の干渉現象を習う時、単色の光源ひとつからふたつのスリット孔を通り抜ける時に限ってスクリーンに縞模様の明暗が生まれるかのように論理を張る説明が教科書にあります.それは数学的な論理で理解しやすい話です. 明暗は逆振幅の相殺または加算による倍という波動の振幅についておきる足し算という説明でした. その条件では相殺や倍の現象にはその光源に位相の同一な波動が必要です. それ以外に相殺は発生しません. ところが、その条件をみたさない干渉が起きるのはなぜなんでしょうか. ご説明を願います. たとえば単色光はレーザーではないから波動の位相は光源においてランダムです. 位相がバラバラの波動なので干渉も回折も観察ができないはずの光源です. ところが単色光または白色光からフラウンホーファー回折が発生します. 位相が揃ってない光から明暗の縞模様がスクリーンに表れ回折という現象が起きる事実があるのです. そしてそのフラウンホーファー回折の物理学、光学による説明の論理は単色の光源でしかなかったのに、都合を合わせて位相の同一な光波から数学を演算した説明です. 単色光に果たして何が作用して位相の同一な光波が生まれているのでしょうか. 論理の通りなら位相がバラバラの光波の単色光源からは重ね合せの光に相殺の暗闇は生まれません. それはサーチライトを何台か使って、スクリーンの同じ場所を照らすと、必ず重なりは明るくなり、重なりに暗くなる部分が決して生まれぬ事で確かめられます. さらにフラウンホーファー回折の装置構成は2重スリットではありません.単孔です. このままでは2重スリットに生まれる干渉の数学的論理による理解は全くのイカサマ、詐欺なのです. 数学を使った錯覚をもとにしたマジックが授業に行われています. 2重スリットや位相の同期を必要としない干渉と回折の現象のあることから、なぜ2重スリットや位相の同期がなぜ不要なのか説明して下さい.

  • 物理の数々の矛盾2

    物理の数々の矛盾2 公転と自転の周期に尽数関係の起きるわけ 尽数関係の原因を下記のヒントABCそれぞれの項を生かしたあなたのアイデアで論じてわたしに教えてください. 太陽系の星にはそれぞれ公転と自転が起きています. それを集めて周期同士の組み合わせを作ってみると、周期の比を分数に表せます. それには尽数という特徴があります. 周期の比の尽数関係を天文物理学では万有引力の干渉から説明する論と、もう一つは重心が球体の中心になくて、重心の位置のずれた起き上がりこぼしのような偏心の星に万有引力が働いた論の二つがあります. でも2つとも欠点を持っているのです. そこで尽数関係の原因を新たなあなたのアイデアで論じてわたしに教えてください. 分母と分子がともに整数の分数は現代の数学には有理数と呼ばれます. 有理数の名称には歴史があり、尽数と呼ばれた時代があります. そんなわけで天文学では周期の比の有理数のことをいまだに尽数と呼ぶ習わしが続いているらしいのです. 尽数関係の周期比にある天体は太陽系の中に無数にあります. それを現代の天文物理学では万有引力の干渉から説明する論と、もう一つは重心が球体の中心になくて、重心の位置のずれた起き上がりこぼしのような偏心の星に万有引力が働いた論の二つがあるのです. あなたの説は新しい3つ目になるかもしれません. 起き上がりこぼしの偏心した重心説は月の自転と月の公転には成り立ちますが、1対1の比以外には成立しません. m:nの周期比の天体が多数あるのでそれらの現象を偏心説では説明ができません. すると万有引力の干渉説に軍配は傾くかもしれません. しかし万有引力の干渉説にも問題があります. 問題とは3体の運動を微分方程式から解くと、安定した周回運動の解が得られない難点があるからです. 宇宙の回転運動は長期間にかけて安定していますから、引力の干渉を原因とする説は矛盾します. 問題の有無の定かな根拠論文を知らないのですが、3体運動には解が無いらしいのです. 根拠をよくご存じならわたしにお知らせくださるとありがたいです. ようするに尽数の原因の2つの説は正しくありません. そこで3つ目の説は以下のヒントを生かして、論じていただきます. A 有理数の関係で表される比の事例を取り入れてあなたの論をからめて下さい. たとえば、分子式の元素数の有理数、正多角体、結晶構造等をからめて下さい. B 高調波の周期を比較すると必ず有理数になります. 2倍や2分の1の関係はオクターブという単位で表し、べき乗のときべき次数をオクターブで表す事ができます.  たとえば振動周期の異なる3体の運動はそのうちの2者の周期の公倍数の振動周期をもつ物体の運動を介して、協調し合う干渉をする事ができます. たとえば空気振動や弦の振動運動ならば、その干渉関係を和音と呼びます. 近い周期差の和音ほど協調しあう干渉は激しく起きます. C OKWAVEに「物質波の同期物理学の矛盾のかずかず」の題で掲げた(1)(2)(3)(4)(5)(6)の内容がヒントになります. (1)角運動量の保存則の矛盾・・  演算通りに角運動量が定値を保つには、(超長楕円軌道の)遠日点側で地球を太陽に引き戻す運動を補う力とエネルギーが必要です. (2)確率波動の性質とファインマンの経路積分の特質・・ 中心極限定理という確率の数理に反する特質がファインマンの経路積分か、もしくは物理現象の全てにあるのです. (3) 最小作用の原理が、天下りの原理とはいえず、特定の現象の疑いがある・・・・ 最小作用の原理とは空間に復元力の働くポテンシャルの偏在があることを意味する現象です.・・物質波の位相の同期が起きている事になります・・ 復元力はF=hdk/dtとなる    (4)エーテルの否定と重力波の有限伝搬速度の矛盾・・  重力波を測定できたとしたら、エーテルを重力波という名前にして観測したことになります. (5) 地球の公転軌道の輪と重力の伝達速度・・ 公転における角運動量の保存則を補い、・・  太陽の放射流がトンネル現象を起こして空間に偏在分布するポテンシャルを発生し、球座標系にポテンシャルの等高線を描いていると予想できるのです. (6) 単孔の光干渉実験に整数個しかない光路の矛盾・・ 光の通り道は一点に定まらないという量子力学の前提に反した論理で単孔の干渉実験では整数個の光路が説明に用いられます. 2重スリットの光の干渉実験や2重スリットの電子線の干渉実験は有名ですが、単孔でも光は干渉します.

  • 光のエネルギーと赤方偏移

    遠方の星からある光が放射され、宇宙空間の膨張のため赤方偏移をうけると、地球側では、光の振動数が、放射された際の振動数より、下って観測されます。 光のエネルギーは振動数に比例しているので、放射された光のエネルギーより、観測されたエネルギーは少なくなります。 この減少した分のエネルギーは、どこへ行ったのですか?

  • 統計力学の問題

    以下の問題で1番を解く際に、ボース分布を使って説くべきなのでしょうか。ギブス因子を考えて解くべきなのでしょうか。頭が混乱しています。それとNは変化するのでしょうか。回答よろしくお願いします。 一辺L の立方体の空洞が温度T の熱浴と接触している場合を考える.熱放射により空洞内で定常振動の電磁波が形 成される.電磁波は2つの偏りがある横波として光速c で伝わる.壁での電磁波の振幅が0 となる境界条件のもとで は,空洞内の電磁波の固有振動の振動数は ν = c2L√(nx^2 + ny^2 + nz^2) , (nx, ny, nz = 1, 2, 3, 4,,,,, ) で与えられる.この条件を満たす固有振動数を小さいものから順番に ν1,ν2,ν3,,,,,νj,,,, (4-1) とする.空洞内の粒子系全体の量子状態を各固有振動ごとの光子数N1, N2, N3,,,,,Nj,,,,,, で表す.この時,零点エ ネルギーを無視して,空洞内のエネルギーは次式で表されるものとする. E =ΣhνjNj  h はプランク(Planck) 定数である.また,ボルツマン(Boltzmann) 定数はk を用いよ. 以下の問いに答えよ. 1. 光子は化学ポテンシャルがゼロのボーズ(Bose) 粒子として振舞う.この系のカノニカル分布と分配関数を求めよ. 2. 1より,特定の偏りにおける振動数νj の固有振動の平均光子数と平均エネルギーを計算せよ.

  • エネルギーのパラドックス

    波動のエネルギーは同じ振動数なら、振幅の二乗に比例することがわかっています。波の強さI は I ∝(f A)^2 ※音をミュートするために・・・・ある振動数の音をマイクで拾って、それをまったく逆位相にしてぶつけてやると、 重ね合わせの原理により、振幅が消失します。実際に、外部の騒音を消すヘッドフォンなどは このような原理だと思います。このとき、振幅はほぼ0であり、また実際、音はかなり弱くなります。 このときの音のエネルギーはどこへ行ってしまったのでしょうか。 同じことが他の波動でも言えると思います。 皆さんのお考えを聞かせてください。

  • 光通信の非線形性

    自己位相変調と縮退四光波混合は同じ物理現象だとどこかで見たことがありますが本当ですか?本当だとすると,自己位相変調によって周波数スペクトル形状が変化する理由がわかりません.

  • 高等学校物理はどう再編すべきだと思いますか。

    高等学校物理はどう再編すべきだと思いますか。私案を次に示します。 (1)運動 ア 力と運動:力のつり合い,運動の表し方,運動の法則 イ いろいろな運動:落体の運動,円運動,単振動,万有引力 ウ 運動量:運動量,力積,運動量の保存 (2)エネルギー ア 力学的エネルギー:仕事,位置エネルギーと運動エネルギー,力学的エネルギーの保存 イ 熱エネルギー:熱と温度,熱と仕事,エネルギーの変換と保存 ウ 気体分子の運動:ボイル・シャルルの法則,分子運動と圧力,内部エネルギー (3)波動 ア 波の性質:縦波と横波,波の伝わり方,波の干渉・回折 イ 音波:音の伝わり方,共鳴,共振 ウ 光波:光の進み方,光の干渉・回折,スペクトル (4)電気と磁気 ア 電界と電流:電界,電位,電気容量,電気抵抗,電流と仕事 イ 電流と磁界:電流による磁界,磁界が電流に及ぼす力 ウ 電磁誘導と交流:誘導起電力、交流、共振回路、電磁波 (5)電子と原子 ア 電子と光:電子の電荷と質量、電子の波動性、光の粒子性 イ 原子と原子核:原子の構造、原子核の構成、放射能、核エネルギー 標準単位数は,物理は理科の基本であることから5単位とします。