• 締切済み

平行四辺形の定義と性質について

現在某学習塾で塾講師としてアルバイトをしている大学生です。 先日中学2年生の生徒に平行四辺形の定義と性質について教えていたのですが、その生徒からとある質問をされ、そのことに対して明確な説明ができませんでした。以下にその内容を書きます。 平行四辺形の定義を "二組の対辺がそれぞれ平行な四角形を平行四辺形とする" 性質は (1)二組の対辺はそれぞれ等しい (2)二組の対角はそれぞれ等しい (3)対角線はそれぞれの中点で交わる である。 これを教えたところ、その生徒は、(1)~(3)の性質がなぜ平行四辺形の定義とされていないのか、それら性質が定義とされていても良いのではないのかという質問をしてきました。 (つまり、平行四辺形の定義は"二組の対辺がそれぞれ等しい四角形を平行四辺形とする"または"二組の対角がそれぞれ等しい四角形を平行四辺形とする"、"対角線がそれぞれ交わる四角形を平行四辺形とする"と、なぜ言われていないのか) 私自身は、 "二組の対辺がそれぞれ並行な四角形"を初めて発見した人が「平行四辺形」という名前を付けて、そう定義付けたとし、その結果として、(平行四辺形が)(1)~(3)という性質を伴っていたにすぎない。その為平行四辺形は上記のような定義と性質になっている... と思ったのですが、それは推測にすぎないため、その生徒には答えを保留しております。 どなたか明確な回答を持っている方がいらっしゃいましたら、よろしくお願いします。

みんなの回答

noname#231195
noname#231195
回答No.2

平行四辺形という名前のものを定義するときに一番ぴったりくるものが "二組の対辺がそれぞれ平行な四角形を平行四辺形とする" ということだ、ということじゃないですか? 実際的な話をすれば、どれを定義とよんでもかまいません。みんな同じことを言っているのですから。 「同じことを言っている」というのはこういうことです。 例えば「二組の対角がそれぞれ等しい四角形」は必ず「二組の対辺がそれぞれ平行な四角形」になります。ということは、この二つは同じ事を言っているのです。 ですからある図形が平行四辺形であることを示すのに、その"定義"と"性質"の4つのうちの一つと合致すれば、それで十分です。 しかし、平行四辺形の定義として「二組の対角がそれぞれ等しい四角形」というと、そういう四角形は二組の対辺がそれぞれ平行になる、だから平行四辺形というのだ、というのは煩わしいし、今度は「名前がふさわしくない」とかいう生徒が出てきそうです。だから、「二組の対辺がそれぞれ平行な四角形」と定義することにするのでしょう。 もちろん歴史的にまず「二組の対辺がそれぞれ平行な四角形」に注目したから平行四辺形という名前を付けたのだとは思っています。おそらくユークリッドの「原論」で平行四辺形をそう定義しているからそれを二十数世紀にわたって踏襲しているのでしょう。

参考URL:
http://www.geisya.or.jp/~mwm48961/math2/proof201.htm
noname#214634
noname#214634
回答No.1

ざっくり書くと、定義は「全世界共通の(図形の)お約束」。 あるものについて語るとき、認識が共通していないと話が通じないため 定められた「特徴」。他にそれを指し示す特徴(性質)はあっても 定義として認められないのは「世界がそれを定義として受け入れてないから」 どの図形も定義って一個しかないのじゃないかな。 性質はそれ以外にも特徴として見られるもの。 ざっくり書く、といった理由はググったらもっとちゃんとした理由があっさり見つかって 流石にそれをまとめて書いたり転載したりする気にはなれなかったからです。 大学生なら、大学にも詳しい話を聞かせてくれる人がいるんじゃないでしょうか? また、もう少し自分で調べてみても良いんじゃないでしょうか。 ググったキーワードは「数学 性質 定義」でした。

関連するQ&A

  • 平行四辺形の定義・性質について

    平行四辺形の定義、性質、条件について教えてください。 定義:2組の対辺がそれぞれ平行 性質:2組の対辺がそれぞれ等しい    2組の対角がそれぞれ等しい    対角線がそれぞれの中点で交わる と多くのHP、教科書にありますが、 例えば「平行四辺形の性質を答えなさい」と問われたとき、 「2組の対辺がそれぞれ平行」と答えたら、 これは正しいでしょうか? (定義は性質として含めてOKなのでしょうか?) また同じ質問で、 「1組の対辺が平行かつ長さが等しい」 と答えたら、 これは間違っていますか? (条件と性質はイコールでしょうか?) 以上基本的な質問で申し訳ないのですが、 よろしくお願い致します。

  • 【中学数学】平行四辺形の条件についてご教示下さい

    以下の、「平行四辺形になるための条件」について2点質問させてください。 (1)定義 2組の対辺がそれぞれ平行である。 (2)定理 2組の対辺がそれぞれ等しい。 (3)定理 2組の対角がそれぞれ等しい。 (4)定理 対角線がそれぞれの中点で交わる。 (5)定理 1組の対辺が平行でその長さが等しい。 <質問1> 上記の5つのうち、いくつ満たせば平行四辺形になるのでしょうか。 <質問2> 上記の、定義と定理の違いは何でしょうか。 初歩的なことで恐縮ですが、ご教示いただけると幸いです。 よろしくお願いいたします。

  • 平行四辺形の性質

    中学校の小テストで、「平行四辺形の性質を書け」という問題で、娘は「2組の対角がそれぞれ等しい」「2組の対辺がそれぞれ等しい」と書いたら「『それぞれ』はいらない!」ということで×になり、正しく覚えていないという事で、「2組の対角は等しい」「2組の対辺は等しい」を授業中に20回ずつ書くように言われたみたいです。そして書いてる間に授業は進んで、その進んだ部分を聞き逃した!どうしよう~?と私に訴えてきました。 そこでお伺いしたいのですが、私は「それぞれ」を入れて習ったように思うのですが、今の時代では間違いなのでしょうか? ちなみに娘の数学の教科書(啓林館)を見てみますと、平行四辺形の性質の所に「それぞれ」という表現はなく、「平行四辺形になる為の条件」のところで「それぞれ」という表現が入っていました。 また、近所の本屋さんに置いてある参考書には「それぞれ」がついてるものもあれば、省いてるものもあるみたいです。 やはり時代が変わって、私が習ったときのような表現ではなくなったのでしょうか? それとも、どちらでも良いのに、学校の先生は教科書に載ってると言う理由から、「画一的」に採点をしたのでしょうか? 本当に、どの参考書にも根拠がないので、判断が出来ません。 雰囲気や感覚、自分はこう習った・・・ではなく、専門家の人に答えて頂ければ嬉しいです。 よろしくお願い致します。

  • 平行四辺形の問題です!

    1組の対辺が等しく、1組の対角が等しい四角形が必ずしも平行四辺形にはならないということを証明したいのですが、分かりますか?

  • ゴーシュ四辺形

    立体幾何の問題がわからないので質問します。 ゴーシュ四辺形ABCDは、添付した図のように対角線BDが分ける2つの三角形ABDとCBDとが、別々の平面上にあるものである。(もしほかの対角線ACを引けば、これと同じように2つの三角形BACとDACとは別々の平面上にある。また2つの対角線AC,BDは同一平面上にない。)という定義があって、 問題は、ゴーシュ四辺形の対辺が2組とも垂直であるときは、対辺の平方の和は相等しい事を証明する。 自分は、対辺の中点を結んで中点連結定理を使えば、各辺に平行な直線で長方形をつくれると考えたのですが、それでは、対辺の長さを比較するには、まわりくどそうですし、わからなかった。解説をよめば、四辺形の2隣辺を2辺とする平行四辺形を作れ。と書いてありました。対辺が垂直だから、解説のとおりに作った平行四辺形は、長方形になることがあり、その場合は隣辺の長さが違うので、証明できないとおもいます。もし解説のとおりに作った平行四辺形が、いつも正方形なら、証明はできると思いました。どなたかなぜ対辺の平方の和は相等しいのかを解説してください。お願いします。

  • 平行四辺形

    平行四辺形は対角線でなくても 中点通ってれば長さ等しいですか? すみません、わからないので なるべくはやく回答ほしいです。 お願いします

  • 「平行四辺形の性質」の3番目

    平行四辺形の性質の3番目は  2本の対角線は互いに他を二等分する ですが、今年の教科書では  2本の対角線はそれぞれの中点で交わる となりました。  難解そうな表現が変わるのはいいことのように思いますが、これはこの教科書だけでしょうか。教えてください。  ちなみに、学図です。 ps だったら  二等辺三角形の頂角の二等分線は、底辺を垂直に二等分する よりも  二等辺三角形の頂角の二等分線は、底辺の垂直二等分線である にすればいいのに・・・

  • 台形と平行四辺形の定義について

    恐れ入ります。 台形と平行四辺形の定義について、学校とインターネットで結論が統一されていないようで、 詳しい方に伺いたいと思います。 焦点は、台形の定義を、 (1) 「一組以上の向かい合う線が並行」とするか、 (2) 「一組のみ(2組はNG)の向かい合う線が並行」とするかに依存していまして、 学校やこどもちゃれんじでは(2)となっており、wikipediaでは(1)となっています。 追加では、長方形と正方形の定義でも同じようなことが言えるかと思います。 この違いは、すでに統一されているものなのか、 判断者によって(1)と(2)に揺らいでしまって良いものかを伺えれば幸いです。

  • 平行四辺形になるための条件

    次の四角形ABCDは平行四辺形であるといえますか。 いえるものは、平行四辺形になるための条件を答えなさい。 いえないものは、その図を答えなさい。 (1)∠A=100°、∠B=80°、∠C=100°、∠D=80° (2)AB=4cm、BC=6cm、CD=6cm、AD=4cm (3)∠A=100°、∠B=80°、AD=5cm、BC=5cm (4)AB平行DC、∠A=∠C (5)AD平行BC、AB=CD という問題です。 私の考えた結果は、 (1)この条件では平行四辺形になりました。   条件:2組の対角がそれぞれ等しい  が当てはまると思います。 (2)この条件では平行四辺形になりませんでした。   図としてはひし形みたいなの細長い形になりました。 (3)この条件では平行四辺形になると思います。  条件は1組の対辺が平行で等しい が当てはまりますか? この条件がよくわかりません。 (4)この条件で平行四辺形ができると思います。  条件はどのようになるのかわかりませんでした。 (5)この条件では平行四辺形になりませんでした。  図としては平行四辺形もできますが、台形もできるのでだめだと思います。 このように調べた結果なりました。 (3)、(4)が特に調べたがよくわかりませんでした。 (3)(4)では平行四辺形にホントになるのですか? なる場合はどのような条件になるのですか? また、平行四辺形にならない図はかいてあるような図でいいのですか?

  • 平行四辺形の質問です。

    一組の対角が90°ということしかわかっていない四角形の対角線を引いて出来る二つの三角形の角は、なんで画像のように等しくなるのでしょうか? 平行四辺形が成り立つのでしょうか?