• ベストアンサー

解析

以下の問題教えてください Z=2x+3/x+2y, x=e^t, y=e^(-t)のとき、dz/dtを求めよ

質問者が選んだベストアンサー

  • ベストアンサー
  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.2

>Z=2x+3/x+2y, x=e^t, y=e^(-t) (1)z=2x+(3/x)+2y ですか? (2)z=(2x+3)/(x+2y) ですか? (1)の場合 dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) =(2-3e^(-2t))e^t -2e^(-t) =2e^t -5e^(-t) (2)の場合 dz/dt=d((2e^t+3)/(e^t+2e^(-t)))/dt ={(2e^(2t)+3e^t)/(e^(2t)+2)}' ={2+(3e^t-4}/(e^(2t)+2)}' ={(3e^t-4}/(e^(2t)+2)}' ={3e^t *(e^(2t)+2)-(3e^(t)-4)2e^(2t)}/(e^(2t)+2)^2 ={6+8e^t-3e^(2t)}e^t /(e^(2t)+2)^2

その他の回答 (1)

  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.1

z=2x+3/x+2y, x=e^t, y=e^(-t) z=2e^t+3e^(-t)+2e^(-t)=2e^t+5e^(-t) dz/dt=2e^t-5e^(-t)=2x-5y

関連するQ&A

  • 解析の問題です

    やり方教えてください z=f(x,y)について、次の問いに答えよ。ただし、z=f(x,y)は偏微分可能でfx,fyは連続とする。 1.x=2t+1,y=tsintのとき, dz/dtを zx, zyとtで表せ 2.x=u^2-v^2,y=2uvのとき∂z/∂u,∂z/∂vをzx, zyとu, vで表せ。 3. x=e^ucosv, y=e^usinvのとき、∂z/∂u, ∂z/∂vをzx, zyとu, vで表せ。

  • 偏微分

    「z=f(x,y),x=x(t),y=y(t)のときd^2z/dt^2を求めよ」という問題なのですが、 dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) まではわかったのですが、最終的な答えが導けません。どなたかご教授願います。

  • 超越関数Eiを使う方程式について

    超越関数Eiを使う方程式について Ae610様やaquatarku5様の方法に従い考えてみました。 土、日とこの問題のことばかり考えています…助けて下さい。 x^2y''-5xy'+8y=e^x に対して、x=e^tとしてtによる微分方程式を求めると、 y' = dy/dx = (dy/dt)/(dx/dt) = y'e^(-t) y''= dy'/dx = (dy'/dt)/(dx/dt) = e^(-2t){y''-y'} 与式に代入して、 e^(2t)e^(-2t){y''-y'}-5e^ty'e^(-t)+8y=e^e^t, y''-6y'+8y=e^e^t…(1) 特性方程式より、z^2-6z+8=0,z=4,2 (1)を同次式とした場合の解はy = C1e^(4t)+C2e^(2t) これに対し、y''-6y'+8y=e^e^tの解をy = Ae^(4t)+Be^(2t)として求める。…(2) ここでhttp://www.osakac.ac.jp/labs/mandai/writings/De-03m2.pdf http://okwave.jp/qa/q5832858.htmlを参考にします。 y'={A'e^(4t)+A4e^(4t)} + {B'e^(2t)+B2e^(2t)} A'e^(4t)+B'e^(2t)=0とすると…(3) y'=A4e^(4t)+B2e^(2t) y''={A'4e^(4t)+A16e^(4t)} + {B'2e^(2t)+B4e^(2t)} これらを(1)に代入して、A'4e^(4t)+B'2e^(2t)=e^e^tを得る…(4) (3)と(4)を連立させて、A'=e^e^t/2e^(4t) , B'=e^e^t/-2e^(2t) を得る。 A=∫ e^e^t/2e^(4t) dt、ここでe^t=Zとして、 ∫ e^z/(2z^4)・1/z dz = 1/2∫ e^z/z^5 dz 部分積分を反復して、-1/48{e^z(6/z^4+2/z^3+1/z^2+1/z)-Ei(z)}+C1を得る。(Cは積分定数) zにe^tを代入してA=-1/48{e^e^t(6/(e^t)^4+2/(e^t)^3+1/(e^t)^2+1/e^t)-Ei(e^t)}+C1…(5) B=∫ e^e^t/-2e^(2t) dt、ここでe^t=Zとして、 ∫ e^z/(-2z^2)・1/z dz = -1/2∫ e^z/z^3 dz 部分積分を反復して、1/4{e^z(1/z^2+1/z)-Ei(z)}+C2を得る(Cは積分定数) zにe^tを代入してB=1/4{e^e^t(1/(e^t)^2+1/e^t)-Ei(e^t)}+C2…(6) (2)(5)(6)よりy=Ae^(4t)+Be^(2t) = -1/48{e^e^t(6 + 2e^t + e^(2t) + e^(3t))-e^(4t)Ei(e^t)}+1/4{e^e^t(1+e^t)-e^(2t)Ei(e^t)}+C1e^(4t)+C2e^(2t) <これが(1)の解> (1)の解に対してe^t=xとすると、x^2y''-5xy'+8y=e^xの解が求められる。 y = C1x^4+C2x^2-1/48{e^x(6 + 2x + x^2 + x^3)-x^4Ei(x)}+1/4{e^x(1+x)-x^2Ei(x)} 以上で如何でしょうか? かなり長くなりましたので計算ミスが心配です。

  • ラグランジュの方法での位置を微分

    x,y,zがtの関数である位置ベクトル↑rは r↑(x(t),y(t),z(t)), r↑(x,y,z)と書くことができるので 時刻tで微分すると lim(dt→0){r↑(x+dx,y+dy,z+dz)-r↑(x,y,z)}/dt =dr↑/dt=v↑ =(dx/dt,dy/dt,dz/dt) となり速度が導かれますが、 ある流体粒子の位置r↑が ある位置(a,d,c)と任意の時刻tで決まるような関数つまりr↑(a,b,c,t)となる場合 速度は(a,b,c)を固定して偏微分で ∂r↑/dt =lim(dt→0) {r↑(a,b,c,t+dt)-r↑(a,b,c,t)}/dt =∂r↑/dt=v↑ (∂x/dt,∂y/dt,∂z/dt) となるのですか? ラグランジュの方法 https://hitopedia.net/%E3%83%A9%E3%82%B0%E3%83%A9%E3%83%B3%E3%82%B8%E3%83%A5%E3%81%AE%E6%9

  • 2変数関数の2次導関数のことです。

    2回連続微分可能で、z=f(x,y),x=x(t),y=y(t)の関係があって、このときのzのtに関する2次導関数を求めるという問題なんですが、1次の導関数は dz/dt=(∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt) だと思うんですが、2次の場合は d^2z/dt^2=(d/dt)((∂z/∂x)(dx/dt)+(∂z/∂y)(dy/dt)) となって、それぞれの項を積の微分法で解けばいいのでしょうか?できたらその形も教えて下さい。お願いします。

  • 複素解析の問題

    線分z=t*e^(π/4*i) (0≦t≦r)にそった ∫_C e^(-z^2)dzの積分の実部を、cos(t^2)とsin(t^2)を使って表せ この問題の答えは 1/√2(∫[0,r] cos(t^2)+sin(t^2) dt) で合っていますか?

  • 連立微分方程式の解き方

    d^2x/dt^2=f(t) d^2y/dt^2=g(t, y, dy/dt, z, dz/dt, d^2z/dt^2) d^2z/dt^2=h(t,d^2y/dt^2, z, dz/dt) というような連立微分方程式を解きたいのですが,どのような方法で解くことができるのでしょうか? ルンゲ・クッタは適用できますか? (d^2y/dt^2の式にd^2z/dt^2が変数として出てきたりしているので,わからなくなってしまいました.) 宜しくお願いします.

  • 指数分布・条件付確率

    「Xの分布=Yの分布=Exp(1)のとき、P(Y≧3X)を求めよ」 という問題についてですが、まず Xの確率密度関数:f(x)=e^(-x) (x>0) Yの確率密度関数:g(y)=e^(-y) (y>0) と表せます。 解答では、 P(Y≧3X) =∫[-∞~∞]P(Y≧3X|X=t)*f(t)dt =∫[0~∞]P(Y≧3X|X=t)*e^(-t)dt  (★) =∫[0~∞]P(Y≧3t)*e^(-t)dt    (▲) =∫[0~∞]{∫[3t~∞]g(u)du}*e^(-t)dt =∫[0~∞]{∫[3t~∞]e^(-u)du}*e^(-t)dt =1/4 となっています。 疑問なのは★→▲への計算なのですが、 条件付確率の条件が外れるということは、XとYが独立だということになります。 しかし、問題文の1行からはXとYが独立とは、私には読み取れないのです。 私が読み取れないだけで、独立という設定なのでしょうか? それとも、指数分布の性質により独立と判断できるのでしょうか?

  • 数学

    z=f(x,y)について、次の問いに答えよ。ただし、z=f(x,y)は偏微分可能でfx,fyは連続とする。 1.x=2t+1,y=tsintのとき, dz/dtを zx, zyとtで表せ 2.x=u^2-v^2,y=2uvのとき∂z/∂u,∂z/∂vをzx, zyとu, vで表せ。 という問題で 1. dz/dt=(dx/dt)(∂z/∂x)+(dy/dt)(∂z/∂y)=2(∂z/∂x)+(sint+tcost)(∂z/∂y) 2. ∂z/∂u=(∂x/∂u)(∂z/∂x)+(∂y/∂u)(∂z/∂y)=2u(∂z/∂x)+2v(∂z/∂y) ∂z/∂v=(∂x/∂v)(∂z/∂x)+(∂y/∂v)(∂z/∂y)=-2v(∂z/∂x)+2u(∂z/∂y) となりますが (∂z/∂x)や(∂z/∂y)のところはfx,fyでもいいんですか?

  • 流体力学でわからないことが

    こんばんは、ヤフー掲示板にも同様の質問をしています。 重複質問をお許しください。 日野幹雄著 流体力学 の中で、 ラグランジュ微分について書かれている部分でわからないことがあります。 以下に書かれている内容と、疑問点を書きますので、御教授願います。 ================== p33より、 ラグランジュ流を考えて、 時刻tにおける流体粒子の位置を(座標x, y, zと区別するために大文字を用いて)X(t), Y(t), Z(t)と表すと、 一つの流体粒子の持つ特性量f(密度など)の時間変化は、数学的に、 d/dt { f (X(t), Y(t), Z(t), t) } = (∂f/∂t) + (∂f/∂X) (dX/dt) + (∂f/∂Y) (dY/dt) + (∂f/∂Z) (dZ/dt) と表される。ところが、流体粒子の位置の時間変化は その点 X(t)=(x, y, z, t)での流速 (このX(t)は、位置を表すベクトルと思います。ボールドで書いてあるので・・・) dX/dt=u(x, y, z, t) dY/dt=v(x, y, z, t) dZ/dt=w(x, y, z, t) であり・・・ ================== 疑問点は以下の通りです。 最初、時刻tにおける流体粒子の位置をX(t), Y(t), Z(t)と示していますが、 それを時間微分したときに得られる各成分の速度は、 なぜx, y, zなどの位置の関数となるのでしょうか? 時刻tのみの関数とならない理由が分りません。 基本的なことかと思いますが、おしえてください。