• ベストアンサー

点対称の条件です

Tacosanの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

「曲線 y=f(x) が点 (a, b) について対称である」とは, どういう条件を満たすときであるかを考えてみてください. ちなみにですが, 「どうしてもわからない」というなら「あきらめる」というのも選択肢の 1つですよ.

noname2727
質問者

補足

受験勉強というわけではありませんので諦めたくないので質問しました。  下の補足で大丈夫ですか?

関連するQ&A

  • 対称な点?

    y=2x+4に対して点(-2,4)に対称な点を求めよという問題を解くときに 対称な点を(p、q)とすると中点(pー2/2,q+4/2)がy=2x+4を通るので 代入して求めますよね!? このとき代入した式は何を表すんですか?

  • 関数の点対称移動

    y=f(x)を点(p,q)に関して対象移動した場合、 2q-y=f(2p-x)である。 点(X,Y)が対称移動したグラフ上にある⇔点(2q-Y,2p-X)が元のグラフ上にある と言うような優れた(?)解説が載っていましたが理解できません。極端な話中学生でも理解できるように教えてください。 宜しくお願いします

  • 対称点のうまい求め方

    直線l:y=2x+1にかんして、点A(3t,t+1)(t:正の実数)と対称な点Bの座標を求めよ という問題で私は B(a,b)と置いて、ABの傾きを求めて、それが-1/2になることと、ABの中点がl上にあることから2式を立ててa、bを求めてますがもっと簡潔な求め方はないでしょうか?ベクトルなど。 教えてください!

  • 3次関数 変曲点=対称点

    大学入試"記述"における答案で ある3次関数 f(x)=ax^3+bx^2+cx+d において二回微分を施すことによりf''(x)が得られます。 この f''(x)=0 となるxを求めると それがy=f(x)のグラフの変曲点のx座標であり、かつ対称点のx座標である。 このことは自明のこととして記述に書いてもよいのでしょうか。 ある問で解答が3次関数の中心点(対称点)を求めるときに面倒な計算をしていたので、 どうにかならないものかと思い質問させていただきました。 よろしくお願いします。

  • y=f(x)が(p,q)に関して対称な場合の必要十分条件は?

    こんぱんは。 よろしくお願いいたします。 [問] y=f(x)が点(p,q)に関して対称なときの必要十分条件は {f(x)□f(□x□p)}/□=q である。 という穴埋め問題なのですが y=f(x)をx軸方向に-p、y軸方向に-q平行移動した y=f(x+p)-q が原点対称なグラフになる。 つまり、奇関数なので g(x):=f(x+p)-q と置くと -g(x)=g(-x) と書けるから -{f(x+p)-q}=f(-x+p)-q となり、 {f(-x+p)+f(x+p)}/2=q となり、 {f(x)□f(□x□p)}/□=q の形になりません。 どう変形すればいいでしょうか?

  • 直線 点 対称

    直線l:y=2x+1に関して点(1,1)と対称な点の座標を求めよ また、lに関して直線m:y=2x/3 + 1/3と対称な直線の方程式を求めよ 行列を使うのでしょうか?解き方を教えてください

  • 線対称に移動した点

    「線対称に移動した点を求めよ。」という問題をよく見るのですが、いつも高校の教科書に載っている「対称移動した点と元の点とを結んだ線分の中点が直線上にある」と「直線同士が垂直に交わる」という条件をつかっています。  もっとはやく解く方法はないですか?たとえば法線ベクトルや、点と直線との距離などで。  文型高校レベルで数(3)Cはわかりません。  はやくなくても解き方を教えてもらえるとありがたいです。 【説明に使えるなら点P(2,1)をy=2x+1に関して対称移動した点を求めよ。という問題があったとして説明していただいても結構です。】  

  • 2図形の共有点を通る図形について

    図形f(x,y)=0と図形g(x,y)=0の共有点を通る図形は、一般に 図形 任意の実数f(x,y)+任意の実数g(x,y)=0 ですよね これはなぜでしょうか? 教科書・参考書では証明は与えられておらず 証明を考えてみたのですができませんでした。 教えてください!

  • 対称点

    三角形ABC内に1点Pがあり、Pの辺BC、CA、ABに関する対称点をそれぞれA1、B1、C1とするという問題がありました。 対称点の定義を教えて下さい

  • 対称性とは??

    f(x,y) = 2x^2 + 2y^2 - x^4 - y^4という式の極大値と極小値を 求めるという問題で偏微分によって (x,y) = (0,0),(1,0),(-1,0),(0,1),(0,-1),(1,1),(-1,1),(1,-1),(-1.-1) という極値の候補が求まると思うのですが、ここから関数の対称性より、 (x,y) = (0,0),(1,0),(1,-1)に絞れるようなんですがなぜこのようになるのか よくわかりません。どなたか教えてください。