• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:光速度不変の法則の疑問)

光速度不変の法則の疑問

このQ&Aのポイント
  • 光速度不変の法則について、平行移動とすれ違いの場合の疑問があります。
  • 光速度不変の法則は、光の速度が一定であることを示していますが、すれ違いの場合など、どのように進行するのか疑問です。
  • また、観測者の視点から見た場合の速度や衝突についても疑問があります。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.32

その2 V慣性系では、定規自体もローレンツ収縮します。仮に定規の長さをCkmとすると、横に置いた時その長さはC*√(1-V^2/C^2)kmとなります。その距離をV慣性系ではCkmと測ることになります。上記の内面鏡は横の半径は実際にはC*√(1-V^2/C^2)kmとなっています。しかし、その長さを測る定規自体がローレンツ収縮するので、内面鏡の半径は縦も横もCkmと定義するのです。従って、V慣性系に居る観測者に、光は往復2Ckmの距離を2秒で帰って来たと観測されるのです。この為に、光速度は不変なのです。 故に、空間の変換式は (2)x’=(x-Vt)/√(1-V^2/C^2) (3)y’= y (4)z’= z となります。 しかし、今までの説明の通り、装置の往路と復路とでは光の相対速度は異なります。光の座標を、便宜上平面で(5)P=(x,y,z)=(Ct*cosθ,Ct*sinθ,0)と表します。V慣性系で光の進んだ時間は(1)t’=t/√(1-V^2/C^2)秒です。光の進んだ距離は、(6)√(x’^2+y’^2+z’^2)です。(6)に(2)(3)(4)(5)を代入すると 光の進んだ距離=(C-Vcosθ)t/√(1-V^2/C^2)km となります。光速度は(6)光の進んだ距離÷(1)光の進んだ時間です。従って 光の相対速度=(C-Vcosθ)km/秒となり、光速度は不変ではないことが分かります。 従って、時間・空間・光速度の変換式は (1)t’=t/√(1-V^2/C^2) (2)x’=(x-Vt)/√(1-V^2/C^2) (3)y’= y (4)z’= z (7)C’=(C-Vcosθ) となります。これをCATBIRD変換と呼びます。 この相対速度の差を利用して、リングレーザージャイロ装置では、ロケットの進行方向の変化を計算しています。片道の光の相対速度も不変であれば、この装置でロケットの進行方向の変化を測定する事は出来ないのです。 光の相対速度の差を最初に測定したのは、マイケルソンとモーレーです。鏡を使い片道11mの距離を横方向と縦方向とに光を往復させました。縦方向の往復距離は22/√(1-V^2/C^2)m・横方向の往復距離は22/(1-V^2/C^2)mです。2本の光は同時には戻らないことを確認しようとしました。しかし、予想に反して2本の光は、上記の仕組みにより同時に戻って来たのです。 以上の説明は、静止系があることが前提となっています。 現在の物理学では、「超ひも理論」が最も有力視されています。そして、宇宙を次の様に想定しています。 宇宙開闢の瞬間、宇宙は非常にエネルギーの高い状態にあり、個々の「超ひも」は自由に空間を動き回っていました。しかし、宇宙のエネルギーが、100GeVになった時、「超ひも」は相転移を起こし、網の状態に繋がって固定されたと考えています。相転移とは、水蒸気が冷えて氷となる様な現象を言います。水蒸気として自由に動き回っていた水の分子は、冷えて相転移を起こし氷の分子として固定され、もはや自由には動き回ることが出来なくなります。「超ひも」も宇宙のエネルギーが低下し、相転移を起こすと、固定され網状に繋がります。 そして、その「超ひもの網」の上を、物質や光及び重力・電磁力・強い力・弱い力の4つの力は、振動として伝わると考えています。つまり、物質が移動して見える現象は、実は超ひもの物質としての振動が、次々と隣の超ひもに伝わる現象であると説明されます。そして、「超ひも」の振動自体が光速で伝わるので、何ものも光速以上で伝わることは出来ないのです。 物質も光も一本の超ひもの振動として表現されます。超ひもの長さをプランク距離Lと言います。振動が超ひもの端から端まで伝わるのに要する時間をプランク時間Sと言います。超ひもの振動は光速Cで伝わります。従って、 光速C=プランク距離L÷プランク時間S=L/S= 1.616199×10^-35m÷5.39106×10^-44秒=299,792.5km/秒となります。  光は抵抗を受けないので、そのまま高速で「超ひもの網」上を伝わります。物質は、ヒッグス粒子がまとわり付き動き難くなるので、「超ひもの網」上を光速未満でしか伝わる事は出来ません。 この、「超ひもの網」が静止系であり、物質の移動速度はこの静止系を基準にすれば、絶対的に定義することが出来るのです。 静止系が無いとすると、必ず双子のパラドックスが起こり、時間の変換式は矛盾に陥ります。静止系が発見されると、このパラドックスは起こりません。また、静止系が無いとすると、何故加速する物体にGが掛かるのか分からなくなります。例えば、猛烈なスピードで加速する車の中に乗っているとします。私の体にはGが掛かり、体は座席に押し付けられます。静止系は無いとすると、全ての物体は移動しているとも静止しているとも自由に考えることが出来ます。従って、眼をつぶってこの車は静止していると念じると、今まで体に掛かっていたGが消えることになります。しかし、実際にはこの様なことは起こりません。Gは静止系を基準とした加速度に応じて私の体に掛かります。 以上の様に、光の往復速度を往路のみ或は復路のみの片道で測ると、それは(C-Vcosθ)km/秒となります。しかし、光を往復させて測ると、常にCkm/秒と測れます。実際に、マリノフ博士は片道で光速度を測る装置を開発しました。その結果、方向により光の相対速度に差があることを確認し、地球の絶対速度を計測されました。 球体の内面鏡の思考実験で、あらゆる方向へ向けて光が同時に発射したとします。光の相対速度は方向により異なるので鏡に反射する時は、光の方向により異なります。 しかし、光の相対速度は、往路も復路もその平均値であるCkm/秒と仮設して、物理計算をしても良いのです。物質を動かす電磁力や重力は、電磁波やグラビトンが物質間を光速で往復することで生じます。電磁波が粒子aを発し粒子bに反射され再び粒子aに戻って来ると、粒子aに引力又は斥力が生じます。粒子aに生じる電磁気力の強さは、電磁波が何秒で帰って来たかで決まります。粒子bが何時どの位置で電磁波を反射したかは関係ありません。従って、物理学上は、電磁波の相対速度が往路も復路も同じCkm/秒であるとして計算しても良いことになります。何故なら、電磁波の往復に要する時間は同じとなり、生じる電磁気力も同じとなるのですから。 また、真実通りに、生じる電磁気力の強さを計算することは大変困難です。一々、往路と復路の電磁波の相対速度を求め、往路と復路とに要する時間を求め、合計しなければなりません。しかし、往路も復路もCkm/秒として計算しても同じ時間が求められるのですから、光速度を不変と仮定して物理計算をした方が合理的です。 つまり、球体の内面鏡に光が反射した時は角度により異なりますが、光速度を不変と仮設して同時に反射したと考えても、物理学上は正しいことになります。これを「同時性の相対性」と言います。 電磁波の進んだ距離は、 (6)=(C-Vcosθ)t/√(1-V^2/C^2)km です。光速度をCkm/秒で不変と仮設するので、光の進んだ時間=電磁波の進んだ距離÷光速度となります。 ∴光の進んだ時間=(C-Vcosθ)t/√(1-V^2/C^2)km÷Ckm/秒=(8)(C-Vcosθ)t/C√(1-V^2/C^2) です。x=Ct*cosθ、故に(9)cosθ=x/Ctです。(9)を(8)に代入すると 光の進んだ時間=(10)t’= (t-Vx/C^2) / √(1-V^2/C^2) となります。まとめると (10)t’= (t-Vx/C^2) / √(1-V^2/C^2) (2)x’=(x-Vt)/√(1-V^2/C^2) (3)y’= y (4)z’= z (11)C’=C となります。これをローレンツ変換と言います。この様にローレンツ変換は、光速度不変を仮設して物理計算を可能にする画期的な発明なのです。 ご質問に戻ります。疑問1)についてです。光の速度は往復で考えると不変と測れますが、直線運動で計測すると不変ではありません。 光の相対速度は、(C-Vcosθ)km/秒なので、光速で移動する者同士が対面する形でお互いの速度を計測すると、cosθ=-1なので、2Ckm/秒と計測されます。また、時間の遅れは上記の通り、物体aおよびbの物質反応が止まることにより起こります。aとbにとって時間は止まっているように定義されます。 疑問2)についてです。静止している観測者cが見ると、当然物体aとbとは30万km/秒で接近していると見えます。 疑問3)についてです。物体aとbとは、60万km/秒で衝突するのであり、C地点で静止している物体とaまたはbが衝突する場合とは当然異なります。加速器でも、静止している物体に加速した粒子をぶつける方法と、加速した粒子同士をぶつける方法とがあります。後者の方が衝突エネルギーが大きいので、それが主流となっています。

ponsuke_21
質問者

お礼

大変詳しくありがとうございます。 私には素朴な疑問と思っていたのですが、蓋を開けてみると何やら私には難しすぎた内容でした。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (31)

  • uen_sap
  • ベストアンサー率16% (67/407)
回答No.1

速度の早い座標系では時間がゆっくり進む・・・特殊相対性理論有名な帰結です。 静止座標系で見た場合と、動いている座標系で話がごちゃまぜになっています。

ponsuke_21
質問者

補足

素人質問で申し訳ありません。 この不変の法則とはあくまでも2つの相対関係であって、その2つの運動を観測している第三者から見た相対的な動きには適用されないのと言う事でしょうか。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 光速度不変の法則に間違いはないか

    相対性理論について教えてください。 相対性理論によると、光速で動いた場合、時間が伸びるとのことです。有名な「ウラシマ効果」というのですが。 科学は全くの素人なので、全くの愚問かもしれませんが、こういう疑問を抱きました。 光速ロケットが仮にあるとして、その発射地点をA、30万Km先の到着地点をB、そのAB間を遠くから眺める地点Cに観察者がいるとします。 その場合、AB間の距離は30万Kmで、これは光速ロケットに乗っている人にとっても、C地点の観察者からも同じ30万Kmです。そして、光の速さが秒速30万Kmとした場合、光速ロケットの速さについても(距離の場合と同じく)両者から見ても一定のはずなのでは? それで、本当に単純な話ですが、秒速30万Kmで30万Km進むわけですので、かかる時間は1秒で、それは光速ロケット内でも外部でも全く同じになるような気がします。 それに、時間が伸びるとは実際のところ何を意味しているでしょうか。例えば精密な原子時計を光速ロケットに搭載して、光速で進んだ結果、時間が伸びたというのであれば、ロケット内の原子時計はロケット外部の同じ時計よりも遅れていることになるはずです。 ということは、光速で進むと、原子の振動数や原子の周りを回る電子の速度なども遅くなるということでしょうか。さもなければ、どうして時計だけが遅れるということがあるでしょうか。 そもそも、相対性理論は光速度不変の法則を大前提に結論を導いていると思うのですが、実はそこに問題点があるのではないかと考えました。 つまり、なぜ光の速さが観測者に関係なく一定だと言えるか、それになぜ光の速さが絶対的な基準として扱われているのか、なぜ光よりも速いものがないと言い切れるのか、その辺りに関してしっかりとした説明がなされていないように感じました。 そもそも「時間」というものは人間が便宜上定めた「物差し」のはずです。その定規がころころ変わることが本当にあってよいのでしょうか。相対性理論は光速度不変の法則を無理矢理に方程式に当てはめた結果、時間でも伸びることがあり得るといった結論に達したのではないでしょうか。 私は全くの素人ですので、そんな偉大な科学者が提唱した偉大な理論を批判するとはけしからんと叱責されてもどうしようもありません。それに、私が抱いたような疑問はその理論を確立する過程で考慮されたはずであり、過去のそして現在の科学者たちがしてきたことを踏襲しているに過ぎません。 しかし、実際、相対性理論に関する入門書などには光速度不変の法則について詳しい解説がなされていませんでした。それで、その点で詳しい方がいらっしゃいましたら、上記の疑問点にご回答願います。できれば、素人でも理解できる仕方でお願いしいます。

  • 光速度不変の原理は正しい?

    この分野は素人ですが、光速度不変の原理のうち、特に「観測者が移動しても相対的な光速は不変である」点について理解が出来ません。 以下の質問を例に詳しい方教えてください。 【状況】 直線X上にそれぞれのキロポスト地点があり、この直線X上を ロケットA…秒速5万キロ ロケットB…秒速20万キロ 光線C…秒速30万キロ(光速) がそれぞれ進むものとします。 【質問1】 (1)1時00分00秒に、ロケットAは50万キロポストから、ロケットBは20万キロポストから、それぞれ同一方向(0キロポストと反対の方向)に進んだ場合、1時00分02秒に60万キロポストでロケットBがロケットAを追い越しますか? (2)この場合、ロケットAからみたロケットBの相対的な速度は秒速15万キロですか? 【質問2】 (1)質問1の状況下で、さらに光線Cが0キロポスト地点から1時00分00秒に発射された場合でも、1時00分02秒に60万キロポストでロケットBがロケットAを追い越しますか? (2)この場合、ロケットAからみたロケットBの相対的な速度は秒速15万キロですか? 【質問3】 (1)質問2の場合、光線CはロケットAおよびロケットBを1時00分02秒に60万キロポスト地点で追い越しますか? (2)この場合、ロケットAからみた光線Cの相対的な速度は秒速25万キロですか?それとも秒速30万キロ(光速)ですか? (3)(2)でもし秒速30万キロだとすれば、ロケットBの相対的速度が秒速15万キロになるので、光線CがロケットBを追い越すのは、40万キロポスト地点で1時00分01秒33に追い越すことになって(1)と矛盾しませんか? 他方、秒速25万キロだとすれば辻褄が合いますが、光速度不変の原理と矛盾しませんか?

  • 重力速度不変の原理は存在しますか

    アインシュタインによる光速度不変の原理は有名ですが、重力速度も不変ですか。物体が移動中でも、重力波が伝わる速度は上限を超えませんか。水中では光速が下がり、物質密度の影響を受けるようなので、重力波の速度の方がより安定していますか。

  • 光速度不変の原理は正しいの?

    以前にも質問させていただいたのですが、光速度不変の原理のうち、特に「観測者が移動しても相対的な光速は不変である」点についてよく理解が出来ません。 例えば、2台のロケットが平行に時速30万キロ(光速)で移動していたとします。 この2台のロケットは同じ速度で同じ方向に進んでいるのですから、どこまで行っても並行していますよね? つまり相手のロケットの相対的な速度は時速0キロですよね? でも光速度不変の原理によれば、ロケットの中から見た相手のロケットの相対速度は時速30万キロでなくてはならなくなります。 矛盾していませんか?

  • 光速度不変の意味

    光速度不変の意味 最近またアインシュタインに関する本を読んで、しばらくぶりに相対性理論の事を考えてみたのですが、光速度不変というのは理論というより測定の結果から出てきたものだったと思います。光の速度が、光源と観測者の関係がどうあろうと遅くも速くもならずに一定であるということ自体は、物理学的にどういう意味があるのでしょうか?それは光というものを理解するのに何か具体的なヒントを与えるものなのでしょうか? 光速近くで運動する物体の時間が遅くなるとか、その物体を外から観測したときに長さが短くなるといったことと、光速が不変であるということが、頭の中でどうもしっくりと結びつきません。

  • 光速度不変の原理について

    【質問1】 「亜光速の宇宙船から、併走する光の速度を測定すると、光は30万km/sの速度で宇宙船から離れていく。宇宙船からの見た目的にも、光はぶっ飛んで行く」 こういった例が光速度不変の原理の説明によく現れますが、 ----------------------- (1)宇宙船は質量を必ず持つ。よって宇宙船の速度は亜光速が限界(光速にはなれない)。なので、宇宙船からの見た目的にも、光のほうが速いので、光はぶっ飛んで行くように見える。 (2)亜光速である以上、宇宙船内の時間は遅く進む(が、光の速度で進む物の時間よりは遅くはない。亜光速の時間の遅さ<光速の時間の遅さ である)。 (3)宇宙船内は、亜光速なりには時間は遅くなるので、併走する光の速度を測定すると <亜光速なりに遅くなった時間の間に、光が進んだ距離÷亜光速なりに遅くなった時間=30万km/s> となり、光速度不変のつじつまが合う。 ----------------------- という理解でよろしいでしょうか? 【質問2】 また、この例は「亜光速の宇宙船から、併走する光を測定」についてですが、 「光から、併走する光を測定」の場合は、併走する光はぶっ飛ばず、とまって見える気がするのですが。。。(「速度(=km/s)」ではなく、「見た目」の話) あるいは、光速同士(AとB)が併走すれば、AにはBがぶっ飛んで見えて、BにはAがぶっ飛んで見えるのかな?

  • 光速度不変の原理に関することで教えてください

    質量をもつものは、光速度に達すると質量が無限大になってしまうので 光と同じ速度で移動する宇宙船は作れないと思いますが、(光は質量を 持たずエネルギーだけなので光速度となっている?)仮にですが、光速度の 90%の早さで移動する宇宙船に載っていた場合でも、それと並行して同じ方向に 走る光は、光速度不変の原理に従って、静止してる場合と変わらず、1秒間に 30万キロで飛んでいくのを観測する事になるそうですね。不思議ですが・・ それなら、もし光が2つ並行して宇宙空間を飛んでいた場合、片方の光から 他方の光を見たと仮定した場合ですが、やはり30万キロで飛んでいくのでしょうか? それとも、並んで同じ速度で飛んでるのを見ることになるのでしょうか? いったいどのように見えるのか教えて頂きたいのですが。 この質問は、そんなことは出来ないから回答できないとかではなく、理論上は 光速度不変の原理では、どう見えるかをお教えください。

  • 相対性理論:光速度不変

    特殊相対性理論を勉強したはずなのですが、 すっかり忘れてしまいました^^; 確か、光速度普遍とは相対速度には当てはまらないと 聞いた事があったような気がするんですが^^;; これって間違ってますか? それプラス以下の質問。。 光速度不変とは、相対速度も不変なのでしょうか? 例:光の速さで飛んでいるロケットA、Bが衝突するとき、観測者には 2cの速さでぶつかったように見えるのではないですか? (でもこれって、ロケットAが止まってると考えたら、ロケットBが 2cの速さでロケットAに近づいてる事になりますから、やっぱり おかしいですね^^;) それと、光速で進むロケットの中で進行方向と同じ向きに光を 出したとき、その光をロケットの外側で観測すれば、 ロケットの中を進行方向と同じ向きに進む光は ロケットの外にいる観測者には“2c”として観測されるように思うのですが、 相対性理論はこれをどのように説明しているのでしょうか? 時間の遅れ、ローレンツ収縮などを使って説明してくださいm(_ _)m

  • 慣性の法則と速度合成について。

    等速直線運動をする宇宙船があります。宇宙船の前方が正の方向とします。宇宙船からみて、相対速度v2で飛んでいるミサイルがあるとします。そして、この宇宙船を静止系からみると速度v1だとします。そうすると、静止系からみてミサイルの速度はv1+v2である!と言う人がいます。 これはニュートン力学ではそうなりますが、特殊相対性理論ではそうなりませんよね。v1+v2はガリレイ変換から導出されます。ローレンツ変換からは導出されません。でも、それはとりあえず置いときます。 もっと変なことを言います。 「ミサイルの速度がv1+v2になるのは、ミサイルが慣性の法則に従うからだ」 さらに、「光速度不変は間違っている。ミサイルでなく光だとすると、静止系からみて光の速度はv1+c(cは宇宙船からみた光速)になる。なぜなら、光は慣性の法則に従うからだ」と言います。 私が思うのに、ミサイルが慣性の法則に従うからといって、ミサイルの速度がv1+v2になると言うことは論理的にできないと思います。 これは正しいですか。 同じように、光が慣性の法則に従おうが従うまいが、光速度不変には何の関係もないと思います。 私は光は慣性の法則に従わないと思っていますが、たとえ、光が慣性の法則に従うとしても、(光速度不変かどうかも不明だとして)、「光速度不変は間違っている。光はv1+cになる」ということは、論理的に言えないと思います。 どうなんでしょうか。

  •  光速についてご質問します。観測者からの光の速度は不変ですね。仮に光速

     光速についてご質問します。観測者からの光の速度は不変ですね。仮に光速の99%で移動する宇宙船aとそれを外から見ている観測者bとします。aの船内から前方へライトを付けました。ライトが船内の前方へ到達する時間をkとします。とすると観測者bから見た到達時間はkより多くかからなければなりませよね。光速の99%なんで、到達するのがスローに見えるのでしょうか?  光速は超えられないのですが、仮に光速で移動したとすると観測者は前方に到達することを確認できません。だから光速を超えることはできないということですか?また、宇宙船内の光は速度cで進みます。とすると宇宙船a内のライトは宇宙船にとっては観測者bに対して(1+99/100)cとなり、宇宙船にとっての観測者に対するライトの速さは光速を超えてしまうのですか?うまく表現できませんが、どこに間違いが有るのか教えてください。