3m+2の場合の微分方程式の基本解について

このQ&Aのポイント
  • n = 3mの場合とn = 3m+1の場合は基本解がありますが、n = 3m+2の場合は基本解は不要です。
  • n = 3mの場合の基本解は、y = 1 + Σ[m=1,∞] 1/[ 3^m * m! * (3m-1){3(m-1)-1} * ... * 2 ] * x^3mです。
  • n = 3m+1の場合の基本解は、y = x + Σ[m=1,∞] 1/[ 3^m * m! * (3m+1){3(m-1)+1} * ... * 4 ] * x^(3m+1)です。
回答を見る
  • ベストアンサー

3m+2の場合の基本解は不要ですか?

次の微分方程式の基本解を級数による解放で求めよ。      (d^2 y)/(dx^2) - xy = 0 解      y1 = 1 + Σ[m=1,∞] 1/[ 3^m * m! * (3m-1){3(m-1)-1} * ... * 2 ] * x^3m      y2 = x + Σ[m=1,∞] 1/[ 3^m * m! * (3m+1){3(m-1)+1} * ... * 4 ] * x^(3m+1) 解き方 y = Σ[i=0,∞] a[i] * x^i と級数展開して、      dy/dx = Σ[i=1,∞] i * a[i] * x^(i-1)      (d^2 y)/(dx^2) = Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) を微分方程式に代入し、xの次数ごとに係数の条件を導く。 与えられた微分方程式      (d^2 y)/(dx^2) - xy = 0 は      Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) - x * Σ[i=0,∞] a[i] * x^i = 0      Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) - Σ[i=0,∞] a[i] * x^(i+1) = 0 となる。 まず、定数項 = 0 から      a[2] = 0 更に、xの次数ごとに係数が0になることから、次の関係式を得る。      Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) - Σ[i=0,∞] a[i] * x^(i+1) = 0      Σ[i=1,∞] (i+1)i * a[i+1] * x^(i-1) - Σ[i=1,∞] a[i-1] * x^i = 0      Σ[i=0,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      (0+2)(0+1) * a[0+2] * x^0 + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      (2)(1) * a[2] * (1) + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      2a[2] + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0 ここで、a[2] = 0 より      2(0) + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      Σ[i=1,∞] { (i+2)(i+1) * a[i+2] - a[i-1] } x^i = 0      Σ[i=0,∞] { (i+3)(i+2) * a[i+3] - a[i] } x^(i+1) = 0      x * Σ[i=0,∞] { (i+3)(i+2) * a[i+3] - a[i] } x^i = 0 両辺をxで割って      Σ[i=0,∞] { (i+3)(i+2) * a[i+3] - a[i] } x^i = 0      (n+3)(n+2) * a[n+3] - a[n] = 0     (n = 0,1,2,...) 以上のことより、nが3の倍数の場合、n=3m (m=1,2,3,...)として      a[3m] = 1 / [ 3m(3m-1) * 3(m-1){3(m-1)-1} * ... * 3(2) ] * a[0]          = 1 / [ 3^m * m! * (3m-1){3(m-1)-1} * ... * 2 ] * a[0]     (m = 1,2,3,...) から、a[0]を初項として1つの基本解      y1 = a[0] + Σ[m=1,∞] 1 / [ 3^m * m! * (3m-1){3(m-1)-1} * ... * 2 ] * a[0] * x^(3m)     (m = 1,2,3,...) を、また、nが(3の倍数+1)の場合、n=3m+1 (m=1,2,3,...)として      a[3m+1] = 1 / [ (3m+1)3m * {3(m-1)+1}3(m-1) * ... * 4(3) ] * a[1]          = 1 / [ 3^m * m! * (3m+1){3(m-1)+1} * ... * 4 ] * a[1]     (m = 1,2,3,...) から、a[1]を初項としてもう1つの基本解      y2 = a[1] + Σ[m=1,∞] 1 / [ 3^m * m! * (3m+1){3(m-1)+1} * ... * 4 ] * a[1] * x^(3m+1)     (m = 1,2,3,...) を得る。a[0] = 1, a[1] = 1 とすると、      y1 = 1 + Σ[m=1,∞] 1 / [ 3^m * m! * (3m-1){3(m-1)-1} * ... * 2 ] * x^(3m)     (m = 1,2,3,...)      y2 = 1 + Σ[m=1,∞] 1 / [ 3^m * m! * (3m+1){3(m-1)+1} * ... * 4 ] * x^(3m+1)     (m = 1,2,3,...) となる。 ・・・と本に書いてあります(少し加筆してます)。 ここまで計算は出来ているんですけど、計算の意味をよく理解できていません。 特に、n = 3m の場合と n = 3m+1 の場合はありますけど、n = 3m+2 の場合の基本解は必要ないのですか? それって、      y = 1 + x + 3x^3 + 12x^4 + 6x^6 + 42x^7 + ... というように「x^2, x^5, x^8, ... の係数は0になる」ということですか? それとも、別にもう1つ基本解を増やそうと思ったら、n = 3m+2 の場合も追加できるものなんですか? どうか教えてください。お願いします。

  • libre
  • お礼率93% (230/245)

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.1

>まず、定数項 = 0 から >     a[2] = 0 ↑ここに注目。

libre
質問者

お礼

ああ、なるほど。n = 3m+2 の場合は0なので「なし」ですね。 自分で書いてても結構気付かないものなのです。(^^ゞ あと、自己訂正です: y = 1 + x + 3x^3 + 12x^4 + 6x^6 + 42x^7 + ...           ↓ y = 1 + x + 6x^3 + 12x^4 + 30x^6 + 42x^7 + ... のはずですね、きっと。 素早いご指摘、ありがとうございました!

関連するQ&A

  • 私の計算結果のxの次数が+1だけズレる

    次の微分方程式の基本解を級数による解放で求めよ。      (d^2 y)/(dx^2) - xy = 0 解      y1 = 1 + Σ[m=1,∞] 1/[ 3^m * m! * (3m-1){3(m-1)-1} * ... * 2 ] * x^3m      y2 = x + Σ[m=1,∞] 1/[ 3^m * m! * (3m+1){3(m-1)+1} * ... * 4 ] * x^(3m+1) 解き方 y = Σ[i=0,∞] a[i] * x^i と級数展開して、      dy/dx = Σ[i=1,∞] i * a[i] * x^(i-1)      (d^2 y)/(dx^2) = Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) を微分方程式に代入し、xの次数ごとに係数の条件を導く。 与えられた微分方程式      (d^2 y)/(dx^2) - xy = 0 は      Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) - x * Σ[i=0,∞] a[i] * x^i = 0      Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) - Σ[i=0,∞] a[i] * x^(i+1) = 0 となる。 まず、定数項 = 0 から      a[2] = 0 更に、xの次数ごとに係数が0になることから、次の関係式を得る。      (n+3)(n+2) * a[n+3] - a[n] = 0     (n = 0,1,2,...) 以上のことより、 ・・・と続くのですが、      (n+3)(n+2) * a[n+3] - a[n] = 0     (n = 0,1,2,...) の計算結果のxの次数が+1だけズレます。      Σ[i=2,∞] i (i-1) * a[i] * x^(i-2) - Σ[i=0,∞] a[i] * x^(i+1) = 0      Σ[i=1,∞] (i+1)i * a[i+1] * x^(i-1) - Σ[i=1,∞] a[i-1] * x^i = 0      Σ[i=0,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      (0+2)(0+1) * a[0+2] * x^0 + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      (2)(1) * a[2] * (1) + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      2a[2] + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0 ここで、a[2] = 0 より      2(0) + Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      Σ[i=1,∞] (i+2)(i+1) * a[i+2] * x^i - Σ[i=1,∞] a[i-1] * x^i = 0      Σ[i=1,∞] { (i+2)(i+1) * a[i+2] - a[i-1] } x^i = 0      Σ[i=0,∞] { (i+3)(i+2) * a[i+3] - a[i] } x^(i+1) = 0 「xの次数ごとに係数が0になる」ので、 i=0のときはxの係数が0、i=1のときはx^2の係数が0、・・・という具合に、別に1つくらいズレていても0は0だと思うのですが、何かあまりスッキリしません。 やっぱりi=nのときにx^nの係数が0、と言いたいですよね? そこで質問です。 私は計算間違いをしているのでしょうか? もしくは、もし仮に私の計算が正しいとしたら、この次数のズレを無くす方法/自分を納得させる方法はありませんか? では、お願いします。

  • 微分方程式の級数解 a[0] * x^n

    微分方程式      (d^2 y)/(dx^2) + (1/x) (dy/dx) - (n^2/x^2) y = 0   (x>0) の級数解を、次の問いに従って求めよ。 ただし、n>0とする。 (1) 級数解を      y(x) = x^c * Σ[i=0,∞] a[i] * x^i とおいたとき、指数cはどのように求まるか。ただし、a[0] ≠ 0であるとする。 解答 級数解を      y(x) = x^c * Σ[i=0,∞] a[i] * x^i とおいて、項別に微分すると      dy/dx = x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-1)      (d^2 y)/(dx^2) = x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2) これを微分方程式に代入して      x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2)       + (1/x) * x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-1)        + (n^2/x^2) * x^c * Σ[i=0,∞] a[i] * x^i = 0      x^c * Σ[i=0,∞] (c+i)(c+i-1)a[i] * x^(i-2)       + x^c * Σ[i=0,∞] (c+i)a[i] * x^(i-2)        + n^2 * x^c * Σ[i=0,∞] a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i-1) + (c+i) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] [ (c+i) { (c+i-1) + 1} - n^2 ] a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i-1+1) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)(c+i) - n^2 } a[i] * x^(i-2) = 0      x^c * Σ[i=0,∞] { (c+i)^2 - n^2 } a[i] * x^(i-2) = 0 x^(c-2)の係数について      (c^2 - n^2)a[0] = 0 でなければならない。 したがって、a[0] ≠ 0の条件から      c^2 = n^2      c = ±n と定まる。 (2) 一般解を級数解で求めよ。 解答 x^(i+c-2) (i=1,2,3,...)の係数について      { (c+i)^2 - n^2 } = 0 でなければならない。 c=nのとき、      { (c+i)^2 - n^2 } = (n+i)^2 - n^2                = 2ni + i^2 ≠ 0 であるから、a[i] = 0 (i=1,2,3,...)となる。 すなわち、これに対応する解は      a[0] * x^n     ←これが分かりません ・・・とまだまだ続くのですが、a[0] * x^nになる理由が分かりません。 自分で考えてみますと、      Σ[i=0,∞] { (c+i)^2 - n^2 } a[i] * x^(i+c-2) = 0 で、(i=1,2,3,...)はすべてa[i] = 0になると言ってるのだから、残るはi=0のみ。 i=0:      { (c+0)^2 - n^2 } a[0] * x^(0+c-2) = 0      { c^2 - n^2 } a[0] * x^(c-2) = 0 しかも、c=nなので      { n^2 - n^2 } a[0] * x^(n-2) = 0      { 0 } a[0] * x^(n-2) = 0 ・・・x^(n-2)の係数について係数は0という結果になりました。これでいいんですか??? たとえ、{ (c+i)^2 - n^2 } = 2ni + i^2としても、i=0なので0ですよね? このa[0] * x^nはどうやって導いたのでしょうか? 教えてください。お願いします。

  • 微分方程式の級数解の求め方

    微分方程式の級数解の求め方について教えてください。 y' = a^2・y, y(0) = 1 の解が y = f(x) = Σ[n=0→∞]c(n)・x^n であるとします。 この場合に、係数 c10 値と、f(1) の値を求めたいと思います。 以下のように辿ってみましたが、途中でわからなくなりました。 解の式を微分して、 y' = c1 + 2c2・x + 3c3・x^2 + ... 元の方程式を展開すると、 y' = a^2( c0 + c1・x + c2・x^2 + ... ) 両式と y(0) = 1 より、 c1 = c0・a^2 = a^2 2c2・x = c1・x → c2 = c1・x / 2・x = c1 / 2 → a^2 / 2! 3c3・x^2 = c2・x^2 → c3 = c2・x^2 / 3・x^2 = c2 / 3 → a^2 / 3! ゆえに c(n) = a^2 / n! このあと c10 を算出するために上式の a の値は?などとわからなくなりました。 ここまでに誤りがないか、このあとをどうすればよいか、教えていただけないでしょうか。 よろしくお願いします。

  • 2階斉次線形微分方程式の基本解と一般解のズレ

    次の微分方程式の一般解を求めよ。 (d^2 y)/(dx^2) + (1/x) (dy/dx) - 1/(x^2) y = 0 練習問題3.2(3)の解答より      y1 = x が基本解の一つ。      exp (-∫P(x')dx')      = exp(-∫1/x' dx')      = exp(-log x)      = 1/x であるから、もう一つの基本解は      y2 = x∫1/x^3 dx        = x(-1/(2x^2)        = -1/2x したがって、一般解は      y = c1 * x + c2 * 1/x ・・・という問題なのですが、基本解(-1/2x)と一般解(1/x)にズレがあるように思えます。 私の計算も上のようになりましたが、それならば一般解は      y = c1 * x + c2 * -1/2x になるべきではないですか? その前の例題などでは、導き出したy2の値をそのまま一般解に使用しています。 というか、-1/2xを使用しないのなら、なぜわざわざ計算しているのですか??? ちなみに、練習問題3.2(3)では、      P(x) = 1/x, Q(x) = -1/(x^2) を      m(m-1) + mx * P(x) + x^2 * Q(x) = 0 にあてはめて      m(m-1) + m - 1 = 0      m^2 - 1 = 0      (m-1)(m+1) = 0 したがって、      y = x と      y = x^-1       = 1/x が基本解のうちの2つである、となっています。 この時点で、もう一つの基本解は1/xであると分かっているんですよね・・・。 ですから、本の解答の      y = c1 * x + c2 * 1/x は合っているのだと推測します。 ただ、それなら-1/2xという数字が何なのか分かりません。 疑問だらけです。教えてください。お願いします。

  • 微分方程式の級数解

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a[i] * x^i ) のべき級数を用いて求めよ。      x^2 * (dy/dx) - y = x^2 解答 べき級数展開から次の式を得る。      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2 xの次数ごとに両辺の係数を比較すると、      a[0] = 0      a[1] = 0      a[2] = -1      a[n] = (n-1) a[n-1]     (n>=3) なる関係式を得る。これより、n>=3について      a[n] = (n-1) ! * a[2] = -(n-1) ! となる。したがって、微分方程式の級数解として      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i     ←この式の求め方が分かりません を得る。 ・・・と本に書いてありますが、      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i の求め方が分かりません。 a[n] = -(n-1) !まで分かっているので、後は代入するだけだと思っていたのですが、やってみると答えが合いません。例えば、      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2 に      a[n] = -(n-1) !      a[i] = -(i-1) !      a[i-1] = -(i-2) !      a[i+1] = -i ! など各種取り揃えておいて代入すると      x^2 * Σ[i=0,∞] (i+1)( a[i+1] * x^i ) - Σ[i=0,∞] ( a[i] * x^i ) = x^2      x^2 * Σ[i=0,∞] (i+1)( -i ! * x^i ) - Σ[i=0,∞] { -(i-1) ! * x^i } = x^2 (i+1)i ! = (i+1) ! と考えれば      x^2 * Σ[i=0,∞] -(i+1) ! * x^i + Σ[i=0,∞] (i-1) ! * x^i = x^2      -x^2 * Σ[i=0,∞] (i+1) ! * x^i + Σ[i=0,∞] (i-1) ! * x^i = x^2 この前半の項が奇しくもこの本の答え      y = -x^2 * Σ[i=0,∞] (i+1) ! * x^i と同じになります。 ということは、この後半の項はゼロになるべきということですか?でも、ならないですよね? それとも私の計算が間違っているのでしょうか? どうか正しい解き方を教えてください。お願いします。

  • べき級数で解く微分方程式

    次の微分方程式の解を 式(5.1) = y(x) = Σ[i=0,∞] ( a_[i] * x^i ) のべき級数を用いて求めよ。 x (dy/dx) - y = x^k     (ただし、kは1以外の自然数) 解答 y を式(5.1)のべき級数で展開し、微分方程式に代入して係数a_iについての関係式を求める。 (1) べき級数展開から次の式を得る。      x Σ[i=0,∞] (i+1)( a_[i+1] * x^i ) - Σ[i=0,∞] ( a_[i] * x^i ) = x^k xの次数ごとに両辺の係数を比較すると、n≠kなるnについて (n-1)a_[n] = 0 となる。 ←疑問点 n≠1 (n≠k) に対して a_[n] = 0 であり、(k-1) * a_[k] = 1より y = 1/(k-1) * x^k を得る。 n=1に対しては、a_[n] = a_[1] ≠ 0でも(n-1) * a_[n] = 0となる。 実際、y = 1/(k-1) * x^k + ax (aは任意の定数) が微分方程式の解となる。 ・・・と本に書いてありますが、「疑問点」のところの比較の方法が分かりません。 まず、i が 0 から n まで変化する過程を自分で計算してみました。 i=0: x * (0+1) a_[0+1] * x^0 - a_[0] * x^0 = a_[1] * x - a_[0] i=1: x * (1+1) a_[1+1] * x^1 - a_[1] * x^1 = 2a_[2] * x^2 - a_[1] * x i=2: x * (2+1) a_[2+1] * x^2 - a_[2] * x^2 = 3a_[3] * x^3 - a_[2] * x^2 : i=n: x * (n+1) a_[n+1] * x^n - a_[n] * x^n = (n+1) a_[n+1] * x^(n+1) - a_[n] * x^n これらを使って「xの次数ごとに両辺の係数を比較する」んですよね。 しかし左辺だけでも、xの次数が1つずつズレていますよね・・・? これらと x^k を具体的にどうやって比較するのでしょうか? x^2ならx^2だけでまとめるんですか? それともx^3とx^2が混ざった形で比較するのですか(どうやってやるのか分かりませんけども)? どうか教えてください。お願いします。

  • 微分方程式の特殊解

    申し訳ありませんが、教えてください。 (d^2y/dx^2)-(dy/dx)=e^x/(1+e^x) という2階の微分方程式で同次方程式の一般解は、 y=A+Be^x (A,Bは定数) となりますが、特殊解の求め方が分かりません。 お分かりになる方、教えてください。 よろしくお願いします。

  • 連立微分方程式と特殊解について

    dx/dt=-3x-y, dy/dt=4x+2yの特殊解が定数A、B,mを用いて、x=Aexp(mt), y=Bexp(mt)と表されるとして、微分方程式の一般解を求める方法を教えてください。

  • 非同次微分方程式の特殊解について

    非同次微分方程式の特殊解は Q(x)=Ax^n あるいは Q(x)=Ax^n + Bx^(n+1) +…(n次多項式の場合) ・特性方程式の解に0が無ければ、η(x)=kx^n + lx^(n+1) +…+m ・特性方程式が単解0をもてば、  η(x)=x(kx^n + lx^(n+1) +…+m) ・特性方程式が重解0をもてば… などη(x)の置き方がいろいろありますよね。 他にも、三角関数の時や指数関数の時など。 こういった特殊解は、覚え方などあるのでしょうか? 自力で丸覚えするしかないのでしょうか? 解き方は分かるのに、特殊解をη(x)=…なんだったっけかな…と思うことがしばしばあります。 覚え方があるのなら教えて下さい。

  • 1階非同次微分方程式の一般解について

    1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。