• ベストアンサー
  • すぐに回答を!

空間図形。途中式を教えてください。

解答に途中式がないので解き方がわかりません。そこで途中式を教えてください。 四面体OABCにおいて、OA=OB=OC=7、AB=5、BC=7、CA=8とする。Oから平面ABCに下ろした垂線をOHとするとき、次の値を求めなさい。 (3)線分AHの長さ  答え7√3/3 (1)で∠BAC=60°、(2)で△ABCの面積=10√3を求めています。 よろしくお願いします

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数113
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

AH=BH=CH=√(49-OH^2) よってHは△ABCの外心で,上記の値は外接円半径である.よって,△ABCにおける正弦定理より AH=BC/(2sin∠BAC)=7/(2sin60°)=7/√3=7√3/3

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • わからない問題があります。教えてください。

    教えてください。 四面体OABCにおいて、OA=OB=OC=7 AB=5 BC=7 CA=8とする。 Oから平面ABCに下した垂線をOHとするとき、次の値を求めよ。 (1)∠BACの大きさ (2)△ABCの面積 (3)線分AHの長さ (4)四面体OABCの体積 馬鹿ですいません。教えてください。

  • 四面体について

    四面体について 四面体OABCにおいて、OA=OB=OC=7、AB=4、BC=5、CA=6とし、頂点Oから底面ABCに下ろした垂線をOHとしたときの、線分AHの長さはどうやって求めればいいのでしょうか? 回答お願いします。

  • 図形

    四面体OABCにおいて   AB=4, AC=5, ∠BAC=60°   ∠OAB=∠OAC=90°、cos∠OBA=2/3 である。 (1)△ABCの面積を求めよ。 (2)辺BCの長さを求めよ。また、辺OAの長さを求めよ。 (3)四面体OABCの体積を求めよ。また、点Aから平面OBCに引いた垂線と平面OBCとの交点をHとするとき、線分AHの長さを求めよ。 (1)は5√3、(2)の前半はBC=√21と求められたのですが、(2)の後半と(3)の解法がわかりません。回答、よろしくお願いしますm(__)m

  • 空間図形の問題です

    四面体OABCがあって、OA=OB=OC=3,AB=BC=CA=2とする。A(↑a),B(↑b),C(↑c)とする。 平面OBCに関してAと対称な点をDとすると、 ↑ODは正射影ベクトルの考え方など駆使して -a+7/5(b+c) と表せることがわかりました(すみません、ベクトルの矢印は省略しました)。 そして、その次の小問が分かりません。 平面OCDに関してBと対称な点をEとするとき、四面体EABCと体積は四面体OABCの体積の比を求めよ。 という問題です。 回答よろしくお願いします……

  • 四面体の問題

    図のような四面体OABCがあり、3辺OA、OB、OCはともに長さが6で、互いに垂直である。 頂点Oから平面ABCへ下ろした垂線OHの長さを求めなさい。 どなたか解ける方がみえましたらご回答くださいm(_ _)m

  • 空間座標とベクトルの問題です

    どうしても回答法が分からない問題があります(>_<) 《問題》 四面体OABCがあり,OA⊥OC,OB⊥OC,OA=OC=1,OB=2,cos∠AOB=-1/4である。点Oから辺AB,平面ABCに垂線を下ろし,それらの交点をそれぞれD,Eとする。また,↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)点Dは線分ABを【ア】:【イ】に内分しており,|↑OD|=【ウ】である。また,四面体OABCの体積は【エ】である。 (2)↑OE=【オ】↑a+【カ】↑b+【キ】↑cであり,↑DC=【ク】↑DEであるので,3点D,E,Cは同一直線上にある。 《答え》 ア‥1 イ‥3 ウ‥(√10)/4 エ‥(√15)/12 オ‥6/13 カ‥2/13 キ‥5/13 ク‥13/5 よろしくお願いしますm(_ _)m

  • 数学の空間ベクトルです。教えてください

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点O殻下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ

  • 平面図形

    1辺の長さがaの正三角形ABCを底面とし面ABCと面OABが垂直な4面体OABCがある。   Aから辺OCに下ろした垂線の足をDとすると次のように条件が成り立つ OA=OB=b OC=c cos∠ADB=1/3 このとき四面体OABCの体積が√2となる時のa,b,cの値を求めなさい。」について教えてください。

  • 高2のベクトルです

    空間で四面体OABCを考え ベクトルOA=a OB=b OC= cとおく。 (1)Pを3点A,B,Cを通る平面状の点とする。このときOPはs+t+u=1 を満たす次数s,t,uを用いて OP=sa+tb+ucと表されることを示せ。 (2)以上6辺OA,OB,OC,AB,BC,CAの長さをそれぞれ√10,4,2,6,2√7,4とする。内積a・b b・c c・aの値を求めよ (3)3点A,B,Cを通る平面に点Oに下ろした垂線の足をHとする。 ベクトルOH=xa+yb+zcを満たす実数x,y,zを求めよ この問題の(3)なんですが ・Hは平面ABC上の点 (1) ・→OH⊥→AB、→OH⊥AC(2) 以上の条件を使うらしいのですが(2)は以下のとおりでいいのですか? →OH⊥→ABは6ax+6by+6cz=0 →OH⊥ACは4ax+4by+4cz=0 (1)はどうやって表したらいいのですか? 教えてください。 あとできたらのでいいので(1)のほうも教えていただけませんでしょうか?

  • ベクトル

    四面体OABCの内部に点Pがあり2OP+3AP+4BP+5CP=0を満たしている。OA=a、OB=b、OC=cとする。 (3)点Oから△ABCを含む平面に垂線OHを下ろす。 |a|=|b|=|c|=2、a・b=b・c=c・a=1のときOHをa、b、cで表せ。また四面体OABCの体積を求めよ。 式から詳しく教えて下さい。お願いします。 ※等式のなどは→(ベクトル)がつきます。 答えは→  →  →   →    OH=1/3a+1/3b+1/3c   体積√6/2       です。