• ベストアンサー

数学(ベクトル)

この問題の解き方を教えて下さい。 原点を中心とする半径aの球面をS, a(ベクトル) = (3X , 2y, z)とするとき ベクトル場aの曲面S上の面積分の値を体積分になおして計算せよ。 答え・・・8πa^3

  • tki-
  • お礼率55% (88/160)

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

↓これでしょ? http://ja.wikipedia.org/wiki/%E7%99%BA%E6%95%A3%E5%AE%9A%E7%90%86 数学的内容はともかく、公式だけなら高校物理でも習う。 半径 a とベクトル場 a の両方に「a」を使っているのは良くないので、 →f = (3x,2y,z) と書くことにする。 発散定理より、∫∫(→f)・(→dS) = ∫∫∫div(→f)dv ただし、・(→dS) は S 上の面積積分、dv は S 内部の体積分を表す。 実行すると、div(→f) = 3+2+1 と定数になることから ∫∫(→f)・(→dS) = ∫∫∫6dv = 6∫∫∫dv = 6(S内部の体積) = 6・(4/3)πa^3 となる。

tki-
質問者

お礼

ありがとうございます。 勘違いしていた箇所が分かりました。

その他の回答 (1)

回答No.2

Gaussの定理 ∫∫_Sa・dS=∫∫∫_Vdiv adV を使います.ここでベクトル場a=(3x,2y,z)の発散div aは div a=∂(3x)/∂x+∂(2y)/∂y+∂z/∂z=3+2+1=6 なので, ∫∫∫_Vdiv adV=6∫∫∫_VdV=6×(V=Sの内部の体積)=6×(4/3)πa^3=8πa^3 となります.

関連するQ&A

  • ガウスの発散定理

    曲面Sは半径aの球面であり、r[→]は原点Oから測った任意の点(x,y,z)の位置ベクトルであるとする。この時、面積分 ∫∫[S] (r[→]/r^3)•n[→]dS を以下の場合についてそれぞれ求めよ。 (1)Sの中心が点(a,a,a)にあるとき (2)Sの中心が原点にあるとき を解いてください。途中式もお願いします。

  • 大学数学の「空間ベクトル」の解き方がわかりません。

    次の問題が理解できません。どなたか解法をお願いします。 xyz空間の原点を中心とし、半径が1の球面をSとする。Sの単位法ベクトルnの方向は、いつもSの内部から外部に向かうように選んでおく。このとき、ベクトル場v(x)=(3Z 2y x) -実際は縦3行- のS上の面積分∫S v・dS -実際はSは∫の下- の値を求めよ。ガウスの発散定理を使いなさい。 答えは「8Π(パイ)/3」です。解き方のわかる方、解説よろしくお願いします。

  • 3次元空間のグラフについて

     問題を解いていてわからない問題が出てきましたので質問させてください。 ↓以下問題と答え (問題) 3次元空間においてx^2+y^2+z^2=a^2であらわされる曲面が、 x+y+z=bであらわされる平面と一点で接しているとき、aとbの関係を表せ。 (答え) 3次元空間においてx^2+y^2+z^2=a^2であらわされる曲面とは、原点を中心とし、 半径をaとする球面である。球面と平面が1点で接しているとき、 球面の中心と平面との距離は球面の半径と同一であることになる。 したがって、b/ルート3 = aとなる。 と書いてあるのですが、文の流れからb/ルート3は球面の中心と平面との距離を表していると思うのですがなぜこうなるのかが全く分かりません。見にくい文で申し訳ないですが、分かる方がいらっしゃいましたらよろしくお願いします。

  • ベクトル解析学の発散divvの問題について

    ユークリッド空間に、原点をOとするxyz座標をとる。空間からOを除いた領域で定義されたベクトル場v(x)= x/||x||^3 y/||y||^3 z/||z||^3 を考えます。ここに、||x||=√(x^2+y^2+z^2)です。このベクトル場について、 発散divvを計算してください。また、Oを中心とし半径がRの球面S(R)上での面積分∫S(R)v・dSを求めてください。球面S(R)のパラメーター表示は(単位球面)x(u,v)= cosu・cosv cosu・sinv sinu また、計算するとx^2+y^2+z^2=1―(1)です。 解答はdivv=0,面積分の値は4πです。 という問題で解説には「このようにべクトル場が定義されていない点がある場合、この点を囲む閉曲面Sとそれによって囲まる領域Dではガウスの発散定理が成り立ちません。」とあります。 質問1ガウスの発散定理を使わずに、発散divv=0をどのように求めたのでしょうか? 質問2発散divvを求めるのに、偏微分を使って、∂x/∂x+∂y/∂y+∂z/∂z=1+1+1=3では間違いなのはなぜでしょうか? 質問3divv=0とガウスの発散定理による面積分の公式を使わずに、どのように面積分を求めるのでしょうか?これは単位球面だからdivv=0は無視して、単に球の表面積の公式を当てはめてR=1を代入して求めるしか方法はないのでしょうか? 以上3点、途中計算を含めて詳しい解説を宜しくお願いします。 (1)を使って、||x||=1より、v(x)= x y z まではわかりました。

  • 数学の球面の中心や半径に関する質問です。

    数学の球面の中心や半径に関する質問です。 球面S:x^2+y^2+z^2+2x4y-6z-2=0について以下の問に答えよ (1)Sの中心Aの座標およびSの半径を求めよ この1問です。解説、よろしくお願いします

  • ベクトルに関する線積分などの問題です

    ベクトル場A=x^3i+y^3j+z^3k、B=x^2i-z^2j+y^2kがある。 (i,j,kは、x,y,z方向の正の向きの単位ベクトルになります。) (1)線積分∫A・drを求めよ。経路は、(0,0,0)→(1,0,0)→(1,1,0)→(1,1,2)とする。 (2)ベクトル場Bの回転rotBを求めよ。 (3)次の面積分∫rotB・dSを求めよ。ただし、曲面Sは、xy平面上のz>=0にあって、原点を中心とする半径1の半円で囲まれた領域、S={(x,y,z)|x=0,z>=0,y^2+x^2<=1}とする。また、x>0を曲面Sの正の方向とする。 詳しい回答よろしくお願い致します。 (3)に関しては、ストークスの定理を使って線積分に直した方がいいのでしょうか?

  • 面積分の問題です。

    放物面S:z=x^2+y^2、(x^2+y^2<=4)について、 (1)この曲面の表面積 (2)この曲面上でのφ=zの面積分 (3)この曲面上でのベクトル場A=yi-xj+z^2kの面積分 の求め方を教えてください。

  • 面積分の問題

    空間ベクトル場f=(x,y,z)において、原点oを中心とする半径aの球面(閉曲面)をSとし、Sで囲まれる領域をVとおく。このとき、ガウスの発散定理 ∬∫divfdV(積分区間はV)=∬f・ndS(積分区間はS)が成り立つことを確認せよ、という問題についてです。 ∬f・ndSを馬鹿正直に解いてみたのですが… 曲面Sの方程式はx^2+y^2+z^2=a^2であることから、 F=x^2+y^2+z^2-a^2=0とすると、 ▽F=(2x,2y,2z) よって曲面Sの単位法線ベクトルをnとすると、 n=1/a(x,y,z)となるので、 ∬f・ndS=∬1/a(x^2+y^2+z^2)・a/√(a^2-x^2-y^2)dxdy ここで極座標変換x=rcosθ,y=rsinθ(0≦r≦a,0≦θ≦2π)を行うと、 ヤコビアンJ=rであることから、 ∬f・ndS=a^2∬r/√(a^2-r^2)drdθ =2πa^3となって、答えの4πa^3に合いません。 自分でもどこを計算ミスしているのか分からなくて、本当に困っています。もちろん、こんな面倒な計算をしなくとも∬f・ndSが求められることは知っているのですが、このやり方でどうしても正しい答えを導きだしたいのです。私の計算にどこか間違いがあると思いますので、どこか教えて下さい。

  • 教えてください!!

    以下の問題はすべて発散定理、ストークスの定理が適用できるものとして、 ご解答よろしくお願いします。 1.Sを原点中心、半径1の球面とし、このときベクトル場A=( xz )i +( xy )j +( z^2 )k に対して ∫s A・n ds を、発散定理を用いて求めよ。 2.領域Vの境界面をSとする。このとき、divA=0を満たすベクトル場Aと任意のスカラー場fに対して ∫s fA・n ds が成り立つことを証明せよ。 3.中心原点・半径1の球面のx >= 0 となる部分をSとし、球面の外部を表側とする。このとき、 ベクトル場A=(y)i + (yz)j + (xz)k に対して∫s rotA・n ds をストークスの定理を用いて求めよ。 4.ベクトル場A内に曲面Sがあり、その境界の閉曲線をCとする。△A=0 が成り立つとき、 ∫s grad(divA)・n ds = ∫c rotA・dr を証明せよ。 以上の問題をよろしくお願いします。m(--)m

  • 応用解析IIIの問題です。

    (1) a,b,cを正の定数として、平面x/a+y/b+z/c=1が各座標軸と交わる点を頂点とする三角形をSとする。 この時、α、β、γを正の定数とする関数φ=αx+βy+γzのS上における面積分を計算せよ。 (2) 原点(0,0,0)を中心とし、(x,y,0)平面上の半径aの円を低面積として高さhの円柱の側面積をSとする。この時、ベクトル場〈A(r)|=(2x,y,3z)のS上における面積分を計算せよ。 よろしくおねがいします。