• ベストアンサー

行列

Aを成分全て1のm×m行列とします。 B= (0,A A転置,0) Cは対角行列で、m番目までnが並び、それよりしたはmが並ぶとすると、 C-Bの固有値が0,m,n,m+n になることの証明を重複度もこめてどなたかおねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

x=0,m,n,m+n の各々について、 C-B-xE の rank を求めるだけでしょ。 コツコツ計算してみたらいい。 C-B は、実対称行列だから、対角化可能。よって、 固有値の重複度すなわち一般固有空間の次元は、固有空間の次元と等しい。

bakamarudasi
質問者

お礼

ありがとうございます。やってみます。

その他の回答 (2)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

これも, まぁ, べたに固有値と固有ベクトルの関係を式にしてごり押しできるけどね.

bakamarudasi
質問者

お礼

ありがとうございます

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

Aはm×n行列じゃなかろうか?

bakamarudasi
質問者

補足

m×nでした。よろしくおねがいします

関連するQ&A

  • 行列

    行列Aを成分全て1の(m×n)行列とします。このとき、 行列B=( 0,A A転置,0 ) としたとき、Bの固有値が√(mn),0(重複度m+n-2) となることの証明をどなたかお願いします。

  • 行列

    行列A、B、C…をそれぞれ成分が全て正の行和が0の対称行列とし、 行列Xを対角成分に左上からA,B,C,,,と並べて他全て0の行列とすると、 Xの固有値0に対する固有ベクトルが (λA、λA、、、λB、λB、、、λC、λC、λC、、、)に限ることの証明を、 どなたかお願いします。

  • 行列

    A,B,C・・・をそれぞれ正方行列とします。 A,B,C・・・を対角に並べて、その他はすべて0の行列をX(正方行列)とします。 そのとき、Xの固有値を求めると、 A,B,C,・・・のそれぞれの固有値を求めたものをあわせたものに等しいことの証明を、 どなたかお願いします。

  • 行列

    対角成分nでそのほかすべて-1のn×n行列の固有値ってどうなりますか?

  • 行列の対角化

      ┌1 -2 -2┐ A=│1  2  2│   └(-2) 2  1┘ という行列なのですが、対角化できるのでしょうか? 何度も何度も解きなおしてるんですけど対角化できません。 Aの固有方程式の解で重解になっているものがないので対角化は・・可能ですよね? 固有値として-1、±√7が求まるのですが、±√7に対する固有空間を考えるとどうしても固有ベクトルとして成分がすべて0の(3,1)行列しか出てこなく、対角化行列が   ┌0 0 0┐ P=│1 0 0│    └(-1) 0 0┘ といったような行列になってしまうのですが、この場合P^(-1)が存在しないためP^(-1)*A*Pは存在しない事になり、Aは対角化不可能ということになってしまいますよね?? 多分どこか間違った理解をしているところがあると思います。 どなたかご教授お願いできないでしょうか?

  • 行列

    成分が0か1の行列で、対角成分が全て0で、行和が一定で、i,j成分が1ならj,i成分が1でない行列は実数でない固有値を持つことの証明をどなたかおねがいします。

  • 行列の証明問題 (固有値と固有ベクトルの性質)

    行列A=[a(jk)](j:行 k:列 )に関する諸命題を証明し、適当な例を用いて説明せよ。 ただし、λ(1),・・・,λ(n)はAの固有値とする。I:単位行列 (a)実固有値と複素固有値  Aが実行列のときには、その固有値は実数または共役複素数の対からなる。 (b)逆行列  逆行列A^(-1)は0がAの固有値でないとき、またそのときに限り存在する。  その固有値は1/λ(1),・・・,1/λnである。 (c)トレース  Aの対角成分の和をトレースまたは対角和という。これは固有値の和に等しい。 (d)スペクトル移動  行列A-kIは固有値λ(1)-k,・・・,λ(n)-kをもち,Aと同じ固有ベクトルをもつ。 (e)スカラー倍、ベキ  行列kAの固有値はkλ(1),・・・,kλ(n)であり、行列A^m(m=1,2・・)の固有値は  λ(1)^m,・・・,λ(n)^mである。固有関数はいずれもAの固有関数と同じである。 (f)スペクトル写像定理  ’多項式行列’  p(A)=k(m)A^m+k(m-1)A^(m-1)+・・・+k(1)A+k(0)I は固有値    p(λj)=k(m)λj^m+k(m-1)λj^(m-1)+・・・+k(1)λ(1)^(m-1)+k(0) (j=1,・・・,n) をもち、Aと同じ固有関数をもつ。 (g)ペロンの定理  正の成分l(12),l(13),l(31),l(32)をもつレスリー行列Lには1つの正の固有値が  存在することを示せ。 これらの問題(証明)が難しくて分かりません。教えて下さい、お願いします。

  • 線形・行列の証明がさっぱり。。。

    対角成分以外がゼロである正方行列を対角行列という。対角行列の固有値は、対角成分に等しいことを示せ。また、対角成分より左下(右上)の成分がゼロである正方行列を上三角行列(下三角行列)という。上三角行列、下三角行列の固有値が対角成分に等しいことを証明せよ。 この証明がさっぱりわかりません。ご指導お願い致します。

  • 行列の対角化について

    n次正方行列Aがある対角行列と相似の時、行列Aの各特性根αに対する固有空間の次元の和がnになることは分かるのですが、各特性根αの(特性方程式の)重複度と固有空間の次元が一致するのがなぜだか分かりません。どなたか教えてください。お願いします。

  • 転置行列 証明

    転置行列 証明 t(AB)=t(B)t(A) の証明について。 (l,m)行列をAとしてAの(i,j)成分をa(i,j) (m,n)行列をBとしてBの(i,j)成分をb(i,j) 2つの行列の積の(i,j)成分は Σ[k=1~m]a(ik)b(kj)と定義されます。 ABの転置行列t(AB)の(i,j)成分t(AB)(i,j)=(AB)(j,i) よって、 Σ[k=1~m]a(jk)b(ki)・・・(1) =Σ[k=1~m]t(a(jk))t(b(ki))・・・(2) =Σ[k=1~m]a(kj)b(ik)・・・(3) =Σ[k=1~m]b(ik)b(kj)・・・(4) =t(B)t(A) 上は参考書などでよく見る証明なのですが、(3)ってそもそも計算できるのですか? (1)~(4)までの流れは理解できるのですが、(3)を等式でつないでいいのかと気になりました。 (l,m)行列と(m,n)行列の積は(l,n)行列と定義されますが、(3)とは関係ないのでしょうか? ご回答よろしくお願い致します。