• ベストアンサー

内分点

△ABCの内部の点をPとしAPベクトル+2BPベクトル+3CPベクトル=ゼロベクトルが成り立つとする また、2点A、Pを通る直線と辺BCとの交点をQとする AP:PQ、BQ:QCを求めよ APベクトル=1/3ABベクトル+1/2ACベクトルだから AQベクトル=t(1/3ABベクトル+1/2ACベクトル)までは分かったのですが、ここからどうやればよいでしょうか?答えは AP:PQ=5:1 BQ:QC=3:2です

noname#155402
noname#155402

質問者が選んだベストアンサー

  • ベストアンサー
  • ferien
  • ベストアンサー率64% (697/1085)
回答No.1

△ABCの内部の点をPとしAPベクトル+2BPベクトル+3CPベクトル=ゼロベクトルが成り立つとする また、2点A、Pを通る直線と辺BCとの交点をQとする AP:PQ、BQ:QCを求めよ APベクトル=1/3ABベクトル+1/2ACベクトルだから >AQベクトル=t(1/3ABベクトル+1/2ACベクトル)までは分かったのですが、 「ベクトル」は省略します。 AP+2BP+3CP=0より、 AP+2(BP-AP)+3(CP-AP)+5AP=0 6AP=-2(BP-AP)-3(CP-AP) =-2(-PB+PA)-3(-PC+PA) =2(PB-PA)+3(PC-PA) =2AB+3AC よって、AP=(1/3)AB+(1/2)AC A,P,Qは一直線上にあるから、 AQ=tAPより、 AQ=(1/3)tAB+(1/2)tAC ……(1) BQ:QC=s:(1-s)とすると、 AQ=(1-s)AB+sAC ……(2) (1)(2)を係数比較すると、 (1/3)t=1-s,(1/2)t=s 連立させて解くと、 t=6/5,s=3/5 AQ=(6/5)APより、AQ:AP=6:5 だから、AP:PQ=5:1 BQ:QC=(3/5):(2/5)=3:2 でどうでしょうか?

noname#155402
質問者

お礼

なるほど、回答ありがとうございました

その他の回答 (1)

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.2

AQベクトル=t(1/3ABベクトル+1/2ACベクトル)までは分かったのですが、 ここからどうやればよいでしょうか? >ここまで出来ればあとは簡単です。ベクトルを↑で表し、 ABはAB↑の大きさ(長さ)とします。 Qから辺ACに平行な線を引き、辺ABとの交点をRとすると、 AR=(t/3)AB、BR=AB-AR=(1-t/3)AB、BR/AB=BQ/BCより、 BQ=BC(BR/AB)=(1-t/3)BC AQ↑=AB↑+BQ↑=AB↑+(1-t/3)(AC↑-AB↑)=(t/3)AB↑+(1-t/3)AC↑ AQ↑=t(1/3)AB↑+t(1/2)AC↑と比較して1-t/3=t(1/2)よりt=6/5 よってAQ↑=(6/5)AP↑となり、 AP:PQ=AP:(AQ-AP)=1:(6/5)-1=1:1/5=5:1を得る。 又、 BQ:QC=BQ:BC-BQ=(1-t/3)BC:{1-(1-t/3}BC=(1-t/3):(t/3) =(1-2/5):(2/5)=(3/5):(2/5)=3:2を得る。

noname#155402
質問者

お礼

解説してくださってありがとうございました

関連するQ&A

  • 内分について

    △ABCの内部の点をPとしAPベクトル+2BPベクトル+3CPベクトル=ゼロベクトルが成り立つとする また、2点A、Pを通る直線と辺BCとの交点をQとする AP:PQ、BQ:QCを求めよ APベクトル=1/3ABベクトル+1/2ACベクトルだから AQベクトル=t(1/3ABベクトル+1/2ACベクトル) 係数の和が1だからt/3+t/2=1 t=6/5 よってAQベクトル=2/5ABベクトル+3/5ACベクトル) APベクトル:AQベクトル=1:(t-1)=5:1 ここまではいいのですが BQベクトル=AQベクトル-ABベクトル=-3/5ABベクトル+3/5ACベクトル BCベクトル=sBQベクトルだから BCベクトル=-3s/5ABベクトル+3s/5ACベクトル 係数の和が1だから-3s/5+3s/5=1 となって分かりません 教えてください

  • 先ほどの数学Aの続きですが…

    先ほどの数学Aの続きですが… 先ほど回答して下さった方に質問したかったのですが、 まだ使いかたが慣れていなくて途中で途切れてしまいました。 直線BPの延長線と辺ACの交点をQとすると、 △ABQにおいて、三角形の性質より、  AB+AQ>BQ よって、AB+AC>AB+AQ>BQ>BP また、△PQCにおいて、三角形の性質より、  PQ+QC>PC PQ<BQなので、AB>PQ、 点Qは辺AC上の点なので、AC>QC よって、AB+AC>PQ+QC>PC 従って、AB+AC>PB+PC といった証明の仕方であってるでしょうか? 何度もすみません

  • 2等辺三角形の底辺上の点P

    幾何学の証明でわからないことがあります。 「2等辺三角形ABCの底辺BCの上の1点をPとすると、AB^2=AP^2+BP・PCである。」これを証明するとき、 △ABCの外接円とAPの延長との交点をQとすると、 AB^2=AP・AQ=AP(AP+PQ)=AP^2+AP・PQ=AP^2+BP・PC と略解には書いてあります。しかし、AB^2=AP・PQがわかりません。方べきの定理かと思い。△ABPの外接円を考えたりしましたが、うまくいきませんでした。AP・PQ=BP・PCは方べきの定理だと思います。 どなたか、AB^2=AP・AQを解説してください。お願いします。

  • ベクトルの比

    三角形ABCとその内部に一点Pがあり、等式4PA↑+2PB↑+3PC↑=0↑が成り立っている。 APの延長とBCtの交点をQとするとき、BQ:QC,:AP:PQの比を求めよ。 等式をAP↑=2/9AB↑+1/3AC↑にまで変形したとはどうやればいいですか?

  • ベクトルの問題 数学IIB

    正三角形ABCの二辺AB、BC上に点P、QをAP:PB=1:1、BQ:QC=2:1となるようにとる。点Aから直線PQに垂線AHを引く。このとき、ベクトルAHをベクトルAB、ベクトルACを用いて表せ。 この問題でもう3時間ちかく悩んでいるのですが・・・まったく解ける気配がゼロなので質問させていただきます。 ベクトルAB=ベクトルx、ベクトルAC=ベクトルyとしてこれを用いてベクトルAQ、QPを表すことはできました。 ・・・がこれ以上どうやっても先に勧めません。 どなたかヒントをください! よろしくおねがいします。

  • ベクトルの問題です。

    三角形ABCの辺BCを1:2に内分する点をD、辺ABを1:2に内分する点をE、ADとCEの交点をPとする。 (1)ベクトルAPをベクトルABとベクトルACで表すと、 ベクトルAP=□分の□ベクトルAB+□分の□ベクトルAC と表せる。 □の部分に数字が入ります。 (2)BPとCAの交点をQとするとき、CQ:QAとBP:PQを求めよ。 答えだけでいいです。

  • 「ベクトル」の問題なんですが解ける方いましたら教えてください。

    「ベクトル」の問題なんですが解ける方いましたら教えてください。 *ベクトルの→を上手く書けないので(べ)と書かして下さい。 △ABCと点P、Qに対して、等式7AP(ベ)=3AB(ベ)+4AC(ベ)、                2AQ(ベ)+3BQ+4CQ(ベ)=0(べ) が成り立つ時、次の比を求めよ (1)BP:PC (2)AQ:QP   (1)は4:3ですよね? それは分かるのですが(2)がどうしても分かりません。    よろしくお願いします。

  • ベクトル

    △ABCと点P、Qに対して、     →  →  →  →  →  → →  等式7AP=3AB+4AC,2AQ+3BQ+4CQ=0 が成り立つとき、次の比を求めよ (1)BP:PC (2)AQ:QP

  • 数学 平面ベクトル 解き方を教えてください

    (1)△ABCにおいて辺BCを2:1に外分する点をP、辺ABを1:3に内分する点をQ 辺CAを3:2に内分する点をRとする。 AB=b AC=cとおいて次のベクトルをb、cを用いて表せ。 (1)AQ、AR、AP、PQ、PR (2)3点P,Q,Rは一直線上にあることを示せ。 (3)QR:RPを求めよ (2)△ABCにおいて、AB=b AC=cとおく。辺ABを1:2に内分する点をD、辺ACを2:3に内分する点をEとする。また2つの線分CDとBEの交点をPとし、直線APと辺BCの交点をQとする。 (1)BP:PE=s:(1-s)とするときAPをs、b、cを用いて表せ。またCP:PD=t:(1-t)とするとき、APをt、b、cを用いて表せ。 (2)APをb、cを用いて表せ (3)AQをb、cを用いて表せ 類似したような問題を参考にして解いてみたのですができませんでした。 解法の手順も教えてもらえるとありがたいです。

  • ベクトルの問題

    AD//BC、BC=2ADである四角形ABCDがある。点P,Qが ↑PA+2↑PB+3↑PC=↑QA+↑QC+↑QD=↑0 を満たすとき、 (1)ABとPQが平行であることを示せ。 (2)3点P,Q,Dが一直線上にあることを示せ。 (1) AD//BC,BC=2ADから ↑BC=2↑AD=2↑AD ↑AC-↑AB=2↑AD ↑AC=↑AB+2↑AD・・・(1) さらに↑PA+2↑PB+3↑PC=↑0から、 (↑AA-↑AP)+2(↑AB-↑AP)+3(↑AC-↑AP)=↑0 6↑AP=2↑AB+3↑AC (1)を代入すると 6↑AP=2↑AB+3(↑AB+2↑AD) =5↑AB+6↑AD ↑AP=(5/6)↑AB+↑AD・・・(2) また、↑QA+↑QC+↑QD=↑0から (↑AA-↑AQ)+(↑AC-↑AQ)+(↑AD-↑AQ)=↑0 3↑AQ=↑AC+↑AD (1)を代入すると、 3↑AQ=(↑AB+2↑AD)+↑AD    =↑AB+3↑AD ↑AQ=(1/3)↑AB+↑AD・・・(3) ここで、↑PQ=↑AQ-↑AP を 計算すると(2)、(3)より、 ↑PQ={(1/3)↑AB+↑AD}-{(5/6)↑AB+↑AD} =(-1/2)↑AB・・・(4) ∴ ↑PQ=(-1/2)↑AB よって、ABとPQが平行である。 (2)3点P,Q,Dが一直線上にあることを示せ。 ↑PD=↑AD-↑AP (2)を代入して、 ↑PD=↑AD-{(5/6)↑AB+↑AD}   =(-5/6) ↑AB   =(5/3)↑PQ よって、3点P,Q,Dは一直線上にある こうやると教えてもらったんですけど、合っていますか? こういうタイプの問題はとりあえず基準点を定めて位置ベクトルに直せばいいんですか? それとも他にいいやり方があるんですかね?(x_x;)