固有多項式と固有値の解答

このQ&Aのポイント
  • 固有多項式と固有値の問題を解いた結果、固有多項式は(X-1)(X+2)(X-3)であり、固有値は-2, 1, 3です。
  • 固有ベクトルについて、λ1=-2に属する固有ベクトルはv1 = t1[1 -3 -2]、λ2=1に属する固有ベクトルはv2 = t2[1 0 -2]、λ3=3に属する固有ベクトルはv3 = t3[1 2 8]です。
  • 間違っている場合は、どこが間違っているか教えていただけると嬉しいです。
回答を見る
  • ベストアンサー

固有多項式と固有値

固有多項式と固有値の問題を解いたのですが、解答がないため正解かどうか分からずにいます。 もしよろしければ、あってるかどうか教えていただけると、とても助かります! A=|1 1 0| |2 -2 1| |4 -2 3| Aの多項式を求め、固有値をすべて求めよ。 また、それぞれの固有値について固有ベクトルを一つずつ求めよ。 これを解いた結果… Aの固有多項式は(X-1)(X+2)(X-3) 固有値は -2 , 1 , 3 λ1=-2に属する固有ベクトルはv1 = t1[1 -3 -2] ←本当は縦です λ2=1に属する固有ベクトルはv2 = t2[1 0 -2] λ3=3に属する固有ベクトルはv3 = t3[1 2 8] と出ました。間違ってる場合は、どこが間違ってるか教えていただけると嬉しいです。 よろしくお願いします!

noname#155453
noname#155453

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

何ひとつ、間違っていません。 固有多項式も (X-1)(X+2)(X-3) で正しい。 λ に拘るような種類の人のため…というか安全のために、 「固有多項式を φ と置くと φ(X) = (X-1)(X+2)(X-3)」 のように書いてもよいかもしれない。 また、「固有多項式」よりも「特性方程式」のほうが、 頭の硬い人に通じやすいかもしれません。

noname#155453
質問者

お礼

丁寧にありがとうございました。 固有多項式よりも特性方程式ですか! 全然知らなかったので助かりました。 どうもありがとうございました。

その他の回答 (2)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

ちょ~細かいんだけど, 「特性方程式」というならちゃんと「方程式」の形で書く必要はありますね>#2. 「特性多項式」なら方程式じゃないけど. そういえば「特性ベクトル」って表現はあまり見ないなぁ. なんでだろ.

noname#155453
質問者

お礼

特性方程式なら私が書いたような書き方ではなく、方程式の形で書かないといけないのですね! ありがとうございました!!

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

>Aの固有多項式は(X-1)(X+2)(X-3) Xの代わりにλを使った方が良いでしょう。 後は、全部合っています。

noname#155453
質問者

お礼

なるほど。Xではなくλを使った方がいいのですね! ありがとうございます!!

関連するQ&A

  • 固有値に関する問題

    固有値に関する問題ですが、    |2 -1 0| A=|5 -3 -1|    |-3 2 1| という行列に対して、線型写像fをf:R^3→R^3、f(x)=Ax(xはR^3の元)とします。 (1)Aの固有値、固有ベクトルは? (2)R^3の部分空間f(f(R^3)の基底は? という問題なのですが、(1)に対しては、固有値をλとすると、   固有多項式 : λ^3=0  固有値 : λ=0   固有ベクトル : t(-1 -2 1) となると思います。しかし、固有ベクトルが1つしか求めることがでず、対角化できません。この場合(2)の問題に対して、(1)の問題は関連性はないのでしょうか?そんなわけがないと思い、いろいろ考えてはいるのですが、いまいち問題の意図するところがつかめません。どなたかアドバイスをいただけないでしょうか?

  • 固有ベクトルの求め方!

    B= | 4 -3| |-1 2| の大きい方の固有値に対する固有ベクトルを求めよという問題がありまして、 僕の解答は(3,-1)となったのですが、解答には(-3,1)と載っておりました。 どちらでも大丈夫なのでしょうか。 参考書の解答を見ると、途中経過を λ=5に属する固有ベクトルv=(x1,x2)を求める。 Bv=5vより | 4 -3| |x1| |x1| |-1 2| |x2| = 5|x2| これより、 4x1-3x2=5x1 -x1+2x2=5x2 ↓ -x1+-3x2=0 -x1+-3x2=o 解を求めると、x1=-3t x2=t ゆえにλ=5に属する固有ベクトルは (-3t, t)=t(-3,1) となっておりました。 僕の解法は、 |λ-4 3| | 1 λ-2| のλに5を代入いたしまして、 x+3y=0となるので、 そこから適当にx=3 y=-1と定めて、 固有ベクトルを(3,-1)と求めました。 参考書の解法である、tに置くやり方の意味も分かりません。 ご教授頂きますようよろしくお願い致します。

  • 固有値の求める順番?

    3×3行列Aについて A= |0 1 1| |1 0 1| |1 1 0| を対角化せよという問題で まず Φa(t)= |-t 1 1| |1 -t 1| |1 1 -t| より固有値はλ=-1(重解),2 となります。 このあとなのですが、固有ベクトルを求めるときにどちらから先に求めればいいのでしょうか? 実は先にλ=-1の固有ベクトルを求めると A+E= |-1 1 1| |1 -1 1| |1 1 1| = |1 1 1| |0 0 0| |0 0 0| α,β(≠0)として x=αt[-1 1 0] + βt[-1 0 1](tは転置行列を表しています。) 同様にλ=2のときにはγ(≠0)として x=γt[1 1 1] 以上から固有空間は V(-1) = {αt[-1 1 0]}+{βt[-1 0 1]} V(2) = {γt[1 1 1]} dimV(-1) + dimV(2) = 3であるから対角化可能で 固有ベクトルを列にもつ行列をPとして P= |-1 -1 1| |1 0 1| |0 1 1| しかし答えには先に固有値λ=2の固有ベクトル先に求めて x = αt[1 1 1] x = βt[-1 1 0] + γt[-1 0 1] として対角化を P= |1 -1 -1| |1 1 0| |1 0 1| となっているのですが、自分の求めた方法では答えは間違っているのでしょうか? 固有空間から対角化するプロセスが間違っているのでしょうか?

  • 3×3行列の固有値と固有ベクトル

    以下の行列Aの固有ベクトルを求めようとしているのですが,解を見つけられないでいます. 2 1 0 1 2 0 0 0 -2 計算を進めた結果,固有値λは3,1,-2となり,λ=3,1に対応する固有ベクトルはそれぞれ[1,1,0]t,[1,-1,0]tとなったのですが,λ=-2の場合で求めた固有ベクトル[1,1,k]t(kは任意の実数)がAx=λxに対応しない値になってしまいます.私の計算に何か問題があるのでしょうか? また,行列Aは対称行列なのでそれぞれの固有ベクトルの内積は0になると思うのですが,固有ベクトルの値が得られないことと何か関係があるのでしょうか? 回答よろしくお願いします.

  • 固有ベクトル求め方

    3×3行列 A= [ 7 2 2 ] [-6 -1 -6 ] [ 2 2 7 ] を対角化できるかどうか判定しなさい。 対角化できれば、対角化する行列P を1つ求めて、実際にP^(-1)AP を計算して対角化して下さい。 という問題の解法について、いまいちわからないことがあるので、質問します。 解法 まず固有値を求めます。 固有多項式は、Ψ(λ)=(λ-3)(λ-5)^2 で、λ=3、λ=5(重根)となります。 重根の場合、対角化できるか調べるために、 B=A-5Eとして、Bの階数(rank) を調べます。 B= [2 2 2] [-6 -6 -6] [2 2 2] となり、rank=1 よって、重根でも対角化できる、と結論づけて大丈夫なのででょうか? 別な判定方法として、最小多項式を求めて、これが重根ではなかったら「対角化できる」という判定方法があると思います。実際にこの問題の場合は、 (A-3E)(A-5E)=0となり、 最小多項式ψ(λ)=(λ-3)(λ-5)で重根を持ちません。 この判定方法は、前者の方法と「同値」なのでしょうか。同値であれば、その数学的理由を教えて下さい。 次に実際に固有ベクトルを求める過程での質問です。 λ=3についての固有ベクトルpは、 (A-3E)p=0 より [1] [-3] [1] と容易に求めることができます。 重根のλ=5に対する固有ベクトルの求め方について。 (A-5E)p=0 pの固有ベクトルの成分をxyzとします。 x+y+z=0となります。つまりrank=1となります。この式を満たす一次独立なベクトルを2つ見つけます。 x+y+z=0を満たす適当な数字を考えて x,y,z)=(1,1,-2)と(1,0,-1) としました。よってP= [1 1 1] [-3 1 0] [1 -2 -1] としました。そしたら、対角化できました。 しかし、一般的な解法(演習問題の解法)は、 x+y+z=0 より、x=-y-zなので、 s、tを媒介変数として、 x=-s-t y=s z=t より、 (x,y,z)=s(-1,1,0)+t(-1,0,1)と書けるので、 このλ=5に対する独立した固有ベクトルは、(-1,1,0)と(-1,0,1) である。 以上より、対角化する行列P= [1 -1 -1] [-3 1 0] [1 0 1 ] P^(-1)AP= [3 0 0] [0 5 0] [0 0 5] と対角化する、という方法をとります。わざわざ媒介変数stを使ってやるのは何故でしょうか。また、2つの固有ベクトルを直交するようにとってみました。 P= [1 1 1] [-3 -1 1] [1 0 -2] として計算したも対角化できました。結局、x+y+z=0を満たす独立なベクトルだったら、本当に何でもいいということですか?

  • 行列の固有値・固有ベクトルの問題です

    こんにちは。 固有値、固有ベクトル(空間)の問題で分からない所があるので、教えていただきたいです。 問題は 次の線形変換T:R[x]2 → R[x]2 に対して固有値と各固有値についての固有空間を求めろ。 (1)T(f(x)) = f(1-x) (2)T(f(x)) = f(2x) +f ’(x) (1)について R[x]2の標準基{1,x,x^2}は線形変換Tでそれぞれ T(1) = 1 T(x) = 1-x T(x^2) = 1-2x-x^2 となるため、表現行列Aは A=[1 1 1; 0 -1 -2; 0 0 -1] (;ごとに行を区切って書いています) これの固有多項式を解くと、λ=-1,1 λ=-1の場合は固有空間を求めることが出来たのですが、 λ=1のとき、[E-A]の行列を簡約化すると [0 1 0; 0 0 1; 0 0 0] となり、ここからどうすればいいのかが分かりません。 (答えはc1+c2(-x+x^2)となります。) また、(2)の方も同様に行うと、 表現行列Aは A=[1 1 0; 0 2 2; 0 0 4] となり、固有値がλ=1,2,4となります。 λ=2,4の場合は自力で出来たのですが、λ=1のときに、(1)でつまずいた行列と全く同じ形になり、こちらもどうすればいいのか分かりません。  (答えはcとなります。) 長くなってしまい申し訳ないです。 どうぞ、よろしくお願いします。

  • 固有値と固有ベクトル・重解を解に持つ場合の解法

    以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。 問題はこんな感じです。 2×2行列式A A= |1 -1| |4 -3| の固有値と固有ベクトルを求めよ。 (自分の解法) まず 与式= |1-t -1| |4 -3-t| サラスの方法で展開し、 (1-t)(-3-t) - (-1)・4 =t^2 + 2t 1 =(t+1)^2 となるので固有値をλ1,λ2として、 λ1=-1,λ2=-1 (ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。) 固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると A= |1-(-1) -1 | |4 -3-(-1)| = |2 -1| |4 -2| よって 2x1-x2 = 0 4x1-2x2 = 0 この二つは同一方程式より、x1 = 2x2 任意の定数αをもちいてx1 = αとすれば、 x = αt[1,2] しかし、答えには、 x1 = αt[1,2] x2 = βt[1,2] + αt[0,-1] とありました。なぜなでしょう? 参考にしたページなんかを載せてくれるとありがたいです。 ちなみにこんな問題もありました。 A= |0 0 1| |0 1 0| |-1 3 2| これは固有値がすべて1になる場合です。 これも解法がのってませんでした。

  • 行列空間と固有ベクトル

    簡単な問題なのかもしれないのですが,何度解いてもわかりません>< 3次元正方行列全体のなすベクトル空間をVとする。 行列A=((2 0 0)^t (0 -1 0)^t (0 0 -1)^t)として 線型写像f:V→Vをf(X)=AX-XA (X∈V)と定義する。 (1) E_13=((0 0 0)^t (0 0 0)^t (1 0 0)^t)   が固有ベクトルであることを示せ。 (3) 線型写像fに関して,固有値と対応する固有空間を全て求めよ。 という問題で,(1)を解いて,固有値の1つが3となったのですが,(3)で AX-XA=λXとして固有値を求めると,λ=0,±√3となってしまいます。。。 どなたか解説お願いします。

  • 固有値の求める途中で・・・・・

    3×3行列A= |2 1 0| |0 1 -1| |0 2 4| の固有値と固有ベクトルを求める問題なのですが、 固有値はλ=2(重解)λ=3 と求められたのですが、 このあとλ=2のとき、固有ベクトルは A-2E= |0 1 0| |0 -1 -1| |0 2 2| = |0 1 0| |0 1 1| |0 0 0| となることからα(≠0)とすれば x=αt[1 0 0](tは転置行列を表している)こちらはすんなり解けたのですが、 しかし問題は固有値λ=3のときに A-3E= |-1 1 0| |0 2 1| |0 0 0| β(≠0)とすれば x=βt[-2 -2 1] となったのですが、答えには x=βt[-1 -1 2] とありました。 なぜなのでしょう?自分のといた解は間違っているのでしょうか?

  • 固有値と固有ベクトル

    |1 -1| 2×2行列式A =| | |4 -3| の固有値と固有ベクトルを求めよという問題なのですが、 まず 与式=|1-t -1|    |4 -3-t| サラスの方法で (1-t)(-3-t) - (-1)・4 =t^2 + 2t 1 =(t+1)^2 となるので固有値をλ1,λ2として、 λ1=-1,λ2=-1 ここまではできたのですが、固有ベクトルを求める方法ができなくてこまってます。 一応教科書の例題に沿ってやると、 固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると A=|1-(-1) -1 | |4 -3-(-1)| =|2 -1| |4 -2| よって 2x1-x2 = 0 4x1-2x2 = 0 この二つは同一方程式より、x1 = 2x2 任意の定数αをもちいてx1 = αとすれば、 x = αt[1,2] しかし、答えには、 x1 = αt[1,2] x2 = βt[1,2] + αt[0,-1] とありました。 参考にしたページなんかを載せてくれるとありがたいです。