• 締切済み
  • すぐに回答を!

2次曲線の問題です!

放物線の焦点を通る直線がこの放物線で切り取られてできる線分を考えるとき、それらの中点の軌跡はやはり放物線となる。p>0とする。放物線y^2=4pxとその焦点F(p,0)からこの方法で得られる放物線の式とその焦点を求めよ。 よろしくお願いします><

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

指示された順番どおりに計算するだけの問題。 流石に、これは自分でやろう。やってみたものを 補足に書けば、コメントは集まるはず。 線分の端点を y = α, β と置いて始める手と、 線分の式を x = p + x tanθ と置く手があるね。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

1回ならまだしも、こう連投されると、寛大で温厚な私も、回答する気がしない。 どこまで考えたか、それを書け。我慢にも、限度がある。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 【2次曲線】

    【2次曲線】 (1)放物線Y=X^2の焦点と、この放物線上の点とを結ぶ線分の中点の軌跡の方程式を求めよ。 (2)点(2.0)を一つの焦点とし、2直線Y-X-1=0とY+X+1=0を漸近線とする双曲線の方程式を求めよ。 よろしくお願いします m(._.)m

  • 数3 放物線

    放物線y^2=4pxの焦点をFとする。点Qがこの放物線上を動くとき、線分FQの中点Pの軌跡を求めよ。 ただし、pは0でない定数とする。 お願いします。

  • 数学の問題です。

    数学です。 よろしくお願いします。 直線y=mxが放物線y=x^2+1と相異なる2点P,Qで交わるとする。 mがこの条件を満たしながら変化するとき、mのとりうる値の範囲を求めよ。 また、このとき 、線分PQの中点Mの軌跡を求めよ。

  • 軌跡の問題です

    2000年津田塾大学の過去問です。 放物線y=x2(xの2乗)上の2点P(a,a2)、Q(b,b2)がb=a+2を満たしながら動くとする。このとき、線分PQの中点の軌跡の方程式を求め、そのグラフをかけ。 線分PQの中点をR(x,y)とおくと考えて x=a+b/2 y=a2+b2/2 と考え、b=a+2を上の式に代入して考えてみたのですが、その後がよく分からなくなってしまいました。 その後の回答の仕方を教えてください。 ちなみに中点の軌跡だからy=x2のグラフと同じ形と考え、最小値を求めてそれを式に表すという方法ではだめでしょうか?

  • 軌跡の問題です

    放物線y=x^2と直線y=mx+m(m>0)の交点をP,Qとする。 mが変化するとき、線分PQの中点の軌跡を求めよ。 という問題です。 答えはy=2x^2+2x(x>0)とわかっているのですが 途中の計算がさっぱりです。 教えてください。お願いします。 ちなみにx^2とはxの二乗という意味です。 初めてだから書き方が違うかもしれませんが・・・

  • 軌跡と方程式

    『放物線y=x~2と直線y=m(x-1)は異なるP,Qと交わっている。このときの定数mの値の範囲を求め、mの値が変化するときの線分PQの中点Mの軌跡も求めなさい。』 という問題なのですが、放物線y=x~2と直線y=m(x-1)の交点Qを(u,v)、交点Pを(x,y)とし、交点Q(u,v)を放物線y=x~2と直線y=m(x-1)に代入した結果を交点P(x,y)代入してみたのですが、どうも違うようです。 解答によると定数mの値の範囲はm<0,4<mで線分PQの中点Mの軌跡はy=2x~2-2xのx<0,2<xの部分であるようですがここまでのプロセスを教えてください。

  • 二次曲線の問題>_<?

    (1)放物線y^2+2y+4x-1=0を点(2,1)に関して対象に移動した曲線を求めよ。 (2)だ円2x^2+3y^2-1=0を 直線x+y=1に関して対称に移動した曲線を求めよ。 ⇔ まず(1)は題意の式の上にある点をP(x、y)として、点A(2.1)と対称なところQ(X,Y)として中点の座標の定理を使って、もとめたものを、再度題意の長い式に戻してあげて、曲線の式が求まりました。 で、(2)がよくわかりません>_< 2x^2+3y^2-1=0上の点をP(x,y)とし、これと直線x+y=1に対して対称な点、つまり知りたい部分を大文字のX,Yで表してQ(X,Y)としました。 PQの中点は(1)と同じで、R(x+X/2,y+Y/2)となり これはx+y=1の式をみたら、=1を式の後ろに付けれるので、(x+X/2,y+Y/2)=1とまでできました>_< でもこの後が出来ませんでした。 あと、念のため図を描いたのですけど、Pの楕円を一つ、あと、Qの楕円を(楕円かわからないですけど今は>_<)書いてみて、その二つの楕円の間に、距離が対称となるように、直線x+y=1を書きました。 でココの部分で質問なのですけど、 私の図は楕円同士を結ぶ 直線PQと、直線x+y=1の二つの直線が 垂直ではないのですけど合ってますか>_<??? 一応中点の座標Rの位置は点Pに対してと点Qに対して同じ距離、たとえば、ノートの図の上では1cm取っているので、これでOKだと思ったのですけど。。 もしPQと直線x+y=1の線が 垂直とかだったら、垂直の公式mm’=-1が使えると考えたのですけど>_< でも、垂直にしないといけない理由が思い浮かばないので解りませんでした>_< 誰かこの問題教えてください>_<!!! 宜しくお願いします!!

  • 数学の問題の解説お願いします。

    シニア数学演習 185 放物線y=x^2/4上の点Q,Rは、それぞれの点におけるこの放物線の 接線が直交するように動くものとする。 この2本の接線の交点をP、線分QRの中点をMとするとき、次の問いに答えよ。 (1)点Pの軌跡を表す方程式を求めよ。 (2)点Mの軌跡を表す方程式を求めよ。 解答 (1)y=-1 (2)y=x^2/2+1 解法を詳しく教えてください。 よろしくおねがいします。

  • 2000年の 名古屋市大の数学の問題なのですが、解けません。誰か教えて

    2000年の 名古屋市大の数学の問題なのですが、解けません。誰か教えてください(>人<) 2つの放物線y=(x+2)の2乗\\\(1)とy=-xの2乗+1\\\(2)があり、放物線(1)上の点Pにおける接線が放物線(2)と異なる2点Q、Rで交わるとする。点Pがこの条件を満たしながら放物線(1)上を動くとき、線分QRの中点Sの軌跡を求め、それを図示せよ。 です。

  • 軌跡の問題なんですが…

    軌跡の問題なんですが… 問題文 円C,X^2+Y^2=1と 直線L,y=a(X-2)がある。 CとLは異なる二点で交わる。 このときの二点を結ぶ線分の中点の軌跡を求めたい。 交点を結ぶ線分の中点を P(x,y)とする。 このあとは、写真に問題があります。 よろしくお願いします