極限値と区分求積

このQ&Aのポイント
  • 極限値と区分求積に関して、(1)と(2)の場合の正しい解答を教えてください。
  • 区分求積から∫(0->1)xdxとなるのはわかりますが、(1)の場合と(2)の場合はどうなるのか教えてください。
  • (1)の場合の解答として、lim(n->0)(1/n)^2Σ[k=0,n-1](k/n)は正しいですか?また、(2)の場合の解答として、lim(n->0)1/nΣ[k=0,n-1](k/n)((k+1)/n)は正しいですか?
回答を見る
  • ベストアンサー

極限値

区分求積からlim(n->0)1/nΣ[k=0,n-1](k/n)=∫(0->1)xdxとなるのは、わかりますが、 次の場合はどうなるのか、教えてもらえると有り難いです。 (1)lim(n->0)(1/n)^2Σ[k=0,n-1](k/n) (1/2)/n で、0というのは、あまりに間違っていると思います。  正しい、解答はどうなるのでしょうか。 (2)lim(n->0)1/nΣ[k=0,n-1](k/n)((k+1)/n) これは、((k+1)/n)=(k/n)とみていいのでしょうか。  正しい、解答はどうなるのでしょうか。 (1)、(2)について、基本的なことですが、よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • Mr_Holland
  • ベストアンサー率56% (890/1576)
回答No.2

 (1)は自然数の和の公式、(2)は自然数の平方和の公式をつかってはいかがですか。   Σ[k=1→n]k=n(n+1)/2, Σ[k=1→n]k^2=n(n+1)(2n+1)/6 (1) (1/n)^2 Σ[k=0→n-1] k/n =(1/n^3)×n(n-1)/2 =(1-1/n)/(2n) (2) (1/n)Σ[k=1→n-1] (k/n){(k+1)/n} =(1/n^3)Σ[k=1→n-1] (k^2+k) =(1/n^3){n(n-1)(2n-1)/6+n(n-1)/2} =(1-1/n)(2-1/n)+(1-1/n)/(2n)  後はn→∞にすれば極限値が求められます。

112233445
質問者

お礼

回答ありがとうございます おっしゃる通りでした。 区分求積法を使わなくても良かった問題でした。 ただ、疑問はもし、区分求積をつかうとしたら どうなるか。。。でした。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「区分求積からlim(n->0)1/nΣ[k=0,n-1](k/n)=∫(0->1)xdxとなるのは、わかりますが」 というのは本当ですか? これが「わかる」というなら, あなたは「区分求積法」をきちんと理解できていません.

112233445
質問者

お礼

回答ありがとうございます lim(n->0)でなくて、lim(n->∞)でした。 これで、よろしくおねがいします。

関連するQ&A

  • 極限値の求め方。

    解いてみたのですが、答えが合っているか分からないので添削、解答お願いします。 limの下にn→∞を書く書き方が分からないので、lim n→∞という変な書き方になってしまいますが、すみません。 lim n→∞ ((n/((n^2)+(1^2)))+(n/((n^2)+(2^2)))+…+(n/((n^2)+(n^2)))) これの極限値を求める問題です。 = lim n→∞ n((1/((n^2)+(1^2)))+(1/((n^2)+(2^2)))+…+(1/((n^2)+(n^2)))) = lim n→∞ 1/n(((n^2)/((n^2)+(1^2)))+((n^2)/((n^2)+(2^2)))+…+((n^2)/((n^2)+(n^2)))) = lim n→∞ 1/n((1/(1+(1^2)/(n^2)))+(1/(1+(2^2)/(n^2)))+…+(1/(1+(n^2)/(n^2)))) = ∫[0,1]1/(1+x^2)dx = [(tan^-1)x][0,1] =π/4 区分求積法を使って解いたのですが、合っている自信がありません。 見にくくなってしまったのですが、回答をお願いします。

  • 区分求積法

    区分求積法からlim(n->∞)1/nΣ(k=0,n-1)1/{1+(k/n)}は∫(0->1)1/(1+x)dxでlog2 となるのは、分かりますが、 (1)lim(n->∞)(1/n)^2Σ(k=0,n-1)1/{1+(k/n)}は  単純にlog2/nとして、0にはならないと思います。  こんなことをしたら、区分求積法をわかっていないといわれてしまう  と思います。これを正しく解くにはどうしたら良いでしょうか。 (2)lim(n->∞)1/nΣ(k=0,n-1)1/{1+(k/n)*((k-1)/n)}も  単純に(k-1)/nの部分をk/nとはできないと、思いますが、  どうしたらよいでしょうか。 よろしく、お願いします。    

  • an=Σ[k=1->n](1/√k),bn=Σ[k=1->n](1/√

    an=Σ[k=1->n](1/√k),bn=Σ[k=1->n](1/√(2k+1))のとき、 lim[n->∞](bn/an)を求めよ。 次のように考えましたが、行き詰まりました。   1/√2Σ[k=1->n](1/n)*[1/√{(k+1)/n}]÷ Σ[k=1->n](1/n)*{1/√(k/n)} <(bn/an)<1/√2 左辺の式で、区分求積法から、lim[n->∞]としたとき、分母は2となったのですか。 分子に区分求積法が使える形でないと判断し、行き詰まりました。 1つはこの流れの解法でいいのか。もし、よかったら、このあとの処理はどうなるのか。 よろしくお願いします。

  • 区分求積

       n lim  Σ(a+k/n){1+k/√(n^2+1)} n→∞ k=1 が存在するためにはa=□でなければならない。 aを求めよ。 区分求積を使うのだろうと思うのですが、 解き方がわかりません。 教えてください。

  • 区分求積法について

    区分求積法について。 おそらく区分求積法を使うと思うのですが 解けなかったので質問します。 lim[n→∞] 1/n*{1+cos(x/n)+cos(2x/n)+・・・・+cos((n-1)x/n)}=sinx/x を示せ。 これを纏めると lim[n→∞] 1/n*Σ[k=0→n-1]*cos(kx/n)=sinx/x ここからk/n=xとおいて解いたのですが 三角関数の積分区間が[0→1]となってしまい 先へ進めなくなりました。 よろしければ回答お願いします

  • 【区分求積法】極限と総和と積分

    lim n→∞ (1^2+2^2+3^2・・・n^2)/n^3を区分求積法(積分)で教えてください。

  • 区分求積法の計算について

    区分求積法を用いた積分の解き方について、ご教授お願いします。 途中まで解いたのですが、このあとどうすればいいかわかりません。 わかる方、ご指導宜しくおねがいします。 【問題】 閉区間[1,3]をn等分して得られる分割を考え、 定積分の定義にしたがって(区分求積法を用いて)、次の計算をせよ。 ∫[1→3] (2x+1) dx 【自分の答え】 1~n番目までn個に分割した時のk番目の微小面積を合計する。 k番目のx座標(=微笑面積のx座標)は、 1+(2/n)*(k-1)と表すことができる。 よって、k番目の微小面積は (2 * ( 1 + (2(k-1)/n)) + 1) * (2/n) これを、1~n番目まで足し合わせるので、 Σ[k=1~n] (2 * ( 1 + (2(k-1)/n)) + 1) * (2/n) これのn→∞の場合を計算する。 区分積分法の基本公式 ∫[0→1]{ f(x) }dx = lim[n→∞]{n*Σ[k=1~n] {f(k/n)}}より、 ∫[1→3]{ 2x+1 }dx = lim[n→∞]{Σ[k=1~n] (2 * ( 1 + (2(k-1)/n)) + 1) * (2/n)} ※ここから、どう計算をおこなえばいいかわかりません。  Σを展開すればいいとは思うですが。。。 以上、ご指導のほど、よろしくお願いします。

  • 区分求積の問題

    数年前の日本女子大の過去問で区分求積法を利用するらしいのですが、わからない問題があります。どなたかご教授お願いします。 lim(n→∞) {(n+1)^k+(n+2)^k+(n+3)^k+・・・+(n+2n)^k}/{1^k+2^k+3^k+・・・+(2n)^k} 区分求積を使わずに無理やり極限を利用して答えが「2」ではないかと予想していますがどうでしょうか? よろしくお願い致します。

  • 区分求積法

    lim(n→∞) (π/n)Σ(k=2 to n)sin[{π(k-1)}/n] =∫(0→π) sinx dx と解説に書いてあったのですが区分求積で積分区間が0→πとなる理由・何故このような解き方ができるのか、がわかりませんでした。 どなたか教えていただけないでしょうか? よろしくお願いします。

  • 区分求積の変換

    lim(n→∞){1- 1/nΣ(k=1 to n)(k-1/n)5乗} =1-∫(0→1)x5乗dx と解説に書いてあったのですが区分求積の場合だとxに置き換えるのはk/nの時ではないんですか? 分かる方、回答よろしくお願いします。