• 締切済み

行列の固有ベクトルについて

行列A = (2 1 1 ) の固有値を求めたらλ=3(三重解)になりました。       (0 3 0 )       (-1 1 4) この行列の独立な固有ベクトルとしてp1=(1 0 1) 及びp2=(1 1 0)をとりました。 更に行列Aをジョルダン標準形にするために p3=(0 1 0)をとって、変換行列 P = (p1 p2 p3)と その逆行列によって行列Aを変換したのですが、ジョルダン標準形になりませんでした。 ところが試しにp2 = (0 1 -1)としてみたところ、ジョルダン標準形に変換できました。 p2=(1 1 0) とすることと p2 = (0 1 -1) とすることの差はなんなのでしょうか。 どちらも独立な固有ベクトルのように思うのですが・・・

みんなの回答

noname#133363
noname#133363
回答No.2

ジョルダン標準形にならなかったP^-1APを見ると、(0 1 0)の使い方がほんのちょっとまずかった、ということに気づくと思います。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

あれ? p2 = (0 1 -1) でジョルダン標準形になりますか? 手元でやってみた限りでは p2 としてどちらを使っても同じ結果になってますが....

関連するQ&A

  • 行列の固有ベクトル

    (n*n)行列の固有値、固有ベクトルを求める過程で、 固有値が重解になるものの扱い方がよくわかりません。 独立な固有ベクトルがn個求められればよいのですが、 固有ベクトルがn個存在しない場合もあるのでしょうか? また、そういう行列は対角化できないので 代わりにジョルダン標準形にする、 と考えていいのでしょうか? どなたか教えてください。よろしくお願いします。

  • 固有値と固有ベクトルが既知のときの行列

    3次の正方行列 A について次の条件が成り立つとする. | 1| | 0| |-1| は固有値 1 の固有ベクトルである. | 1| |-1| | 0| は固有値 -1 の固有ベクトルである. |2| |0| |1| は固有値 0 の固有ベクトルである. このとき以下の問に答えよ. (1) A を求めよ. (2) A を対角化する行列 P と対角行列 P^-1AP を求めよ. (2)は固有ベクトルをPとすれば,1次独立だからPが正則となり答えが分かるのですが,(1)をどのように出すか分かりません.ご教授お願いします.

  • 3×3行列の固有値と固有ベクトル

    以下の行列Aの固有ベクトルを求めようとしているのですが,解を見つけられないでいます. 2 1 0 1 2 0 0 0 -2 計算を進めた結果,固有値λは3,1,-2となり,λ=3,1に対応する固有ベクトルはそれぞれ[1,1,0]t,[1,-1,0]tとなったのですが,λ=-2の場合で求めた固有ベクトル[1,1,k]t(kは任意の実数)がAx=λxに対応しない値になってしまいます.私の計算に何か問題があるのでしょうか? また,行列Aは対称行列なのでそれぞれの固有ベクトルの内積は0になると思うのですが,固有ベクトルの値が得られないことと何か関係があるのでしょうか? 回答よろしくお願いします.

  • 固有ベクトルの逆行列が存在しない?

    行列A= (0,1,1) (1,0,1) (1,1,0) の固有値と固有ベクトルを求める(ただし各固有ベクトルの最大の成分は1となるようにする) 問題なのですが, 固有値λ=-1(重解),2 と求め 固有ベクトルをそれぞれ x=(x1,x2,x3)=(1,-1/2,-1/2),(1,1,1) と求めたのですが, 対角化行列P= (1,1,1) (1,-1/2,-1/2) (1,-1/2,-1/2) の行列式が0になってしまいPの逆行列が存在しないことになってしまいます。 これはどこかで計算ミスをしているのでしょうか? それとも固有ベクトルに逆行列が存在しないことはあるのでしょうか? 自分ではこれ以上見直しても分からないので 教えてくださると助かります。

  • 行列の固有値と固有ベクトルの証明が分かりません

    (1)2×2行列A=(a b c d)の固有値は x^2-(a+d)x+(ad-bc)=0 の解で与えられることを証明せよ。 (2)(1)の行列Aが固有値α、β(α≠β)を持つとき α、βに対する固有ベクトルをそれぞれ2×1行列(p.q) (r.s)として 2×2行列P=(p.r.q.s) を作ると 2×2行列P-1AP=(α.0.β.0) なることを証明せよ。 という問題が分かりません。 調べてみたのですがよく分かりませんでした。 教えてください。

  • 行列の対角化と固有ベクトル

    行列A、二次の正方行列PについてPが逆行列P~(-1)を持ち、P~(-1)AP=... α、βの値と行列Pの例を一つ定めよ という問題があります。(行列は添付の画像を参照してください。) 回答でわからないところがあります。(1)とおいたあと、 「固有方程式k^2-(1+4)k+1*4-2*(-1)=0から k=2,3」とします。 この2,3がα、βなんでしょうか? そのあと、K=2のとき固有ベクトルを(2,1)(←縦)、K=3のとき固有ベクトルを(1,1)(←縦)となり、 その後Pを添付の図のように導出しました。これは、第一列と第二列は逆にしてもOKなんでしょうか? k=2,3と出てきているので、α、βをどう入れても良いような気がするのですがどうなんでしょうか?

  • 回転ベクトルの固有値、固有ベクトルについて

        回転ベクトル A = | cos(π/4) -sin(π/4) | のとき、              | sin(π/4) cos(π/4) | Aの固有ベクトル行列を求める式 B= P^-1 A P について、B、P^-1、Pのそれぞれどのような値になりますか。 (P^-1はPの逆行列)  

  • 正規行列の異なる固有値の固有ベクトルは直交する?

    Aを正規行列とすると適当な対角行列Λと適当なユニタリ行列Uが存在してU^*・A・U=Λである λとμを異なる固有値として Uの列ベクトルでありλの固有ベクトルであるベクトルが張るベクトル空間をPとし Uの列ベクトルでありμの固有ベクトルであるベクトルが張るベクトル空間をQとしたとき PとQは直交しλの固有ベクトルはPの元でありμの固有ベクトルはQの元であるから「λの固有ベクトルとμの固有ベクトルは直交する」 上の証明について質問します (1)結論は正しいですか? 正しければ (2)証明に穴はありますか? あれば (3)どのように証明したらいいでしょうか?

  • 固有値、固有ベクトルおよび対角化について

    以下の問題なのですが、(2)が特にわかりません。 (1)も自信ありませんが…。 (2)なのですが、行列Aの固有ベクトルは2個しかないので、 対角化ができません。 もし対角化が出来れば、AP=PBに右からPの逆行列をかけることで、 A=PBP^(-1) となって、簡単にPとBは決定できます。(Bは上三角行列とあります) Bは固有値を対角に並べたもので、Pはそれに対応するように固有ベクトルを並べたものですよね。 しかし今回の場合はAがおそらく対角化できないので、そう簡単にはいかないようです。 どのようにして解けばよいのでしょうか? よろしくお願いします。

  • 対角化可能と固有ベクトル

    Pの逆行列をP^(-1)とします。このとき、P^(-1)AP=D(対角行列)を満たす正則行列Pを具体的に与え、P^(-1)APが何になるかを示しつつ、Pが正則行列になる理由、P^(-1)APがそのような形になる理由を説明し、 以上の点を踏まえ、n次正方行列Aがn個の線形独立な固有ベクトル a_1,・・・・a_n(固有値はp1,・・,pn)を持てば、Aは正則行列により対角化可能であることの証明です。 上記証明なのですが、どう進めていけばいいのかわかりません。 よろしくお願いいたします。