論理学 論理式の真理値

このQ&Aのポイント
  • 論理式の真理値を確認しています。
  • 入門書には矛盾する記述があります。
  • 真理値計算の手続きに不備があるのでしょうか?
回答を見る
  • ベストアンサー

論理学 論理式の真理値

論理学 論理式の真理値 ¬(P∧¬Q) の真理値があっているか見ていただけますか。 P Q   ¬Q     P∧¬Q     ¬(P∧¬Q) 1 1    0        O         1 1 0    1        1         0 0 1    0        0         1 0 0    1        0         1 ある記号論理学の入門書(二刷)を使って勉強しています。 具体的な論理式を挙げてタブローの作り方を解説しているページに、「¬(P∧¬Q) が1であるためには、Pか¬Qのどちらかが0でなければならない」という記述があります。しかし、この記述は、僕が上でおこなった真理値の計算と矛盾します。PとQの双方が1でも全体は1になるのではないでしょうか? ¬(P∧¬Q)の真理値はP∧¬Qの真理値を単純に反転させて出したものですが、この手続きに不備があるのでしょうか?ド・モルガンの法則を使って¬P∨Qに変形させてから計算しても、やはり同じ結果になりました。 僕の真理値計算が間違っているのでしょうか?分かるかた教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8019/17138)
回答No.1

¬(P∧¬Q) が1であるためには、Pか¬Qのどちらかが0でなければならない...そのとおりですね。 PとQの双方が1でも全体は1になる...そのとおりですね。 何も矛盾はありませんよ。上はPと¬Qについて言及してるし、下はPとQについてです。

volarevolo
質問者

お礼

おっしゃる通りですね。PとQがともに真というパターンは、「Pか¬Qのどちらかが0でなければならない」という条件に当てはまっていますね。 教えていただかなければ気づきませんでした。 おかげさまで問題が一つ解決しました。

関連するQ&A

  • 【命題「P→Q」における論理の相対性について 】

    命題「P→Q」を否定、論理和、論理積の記号で 表記した場合、  (¬P)∨Q・・・(1)  ¬(P∧(¬Q))・・・(2) となることが書籍に記載されておりました。 (「プログラマの数学」(ソフトバンククリエイティブ)に(1) 「論理と集合のはなし」(日科技連)に(2) がそれぞれ掲載されていました。) ベン図や真理値表も併せて記されていたため、 「P→Q」が上記、2つの式で表記できることまでは 理解できました。 ここで、(1)から(2)、(2)から(1)を導出する場合に、 どのような式変形をすれば  (¬P)∨Q ≡ ¬(P∧(¬Q)) を証明できるのでしょうか? ド・モルガンの法則を導出する際に使う 「論理の相対性」が大いに関係していると (むしろ、「論理の相対性」そのもの?) 勘繰っているのですが、確証できません。 お知恵の拝借を頂けませんでしょうか? よろしくお願いします。

  • 命題論理式の真理表ってなんですか?

    次の命題論理式の真理表を教えてください。 3-1(PかつQかつR)ならばг(¬PかつГQかつ¬R) 3-2(PならばQ)かつ(¬PならばR)ならば(QまたはR) この問題を解くのにはどうしたらいいのでしょう

  • 【論理学】同値式導入規則について

    論理学を独学し始めた者です(「演繹定理」についても質問させて頂いております)。 テキストに記載されていた「同値式導入規則」について、具体例として 記載されていた内容が理解できません。 (使用テキスト:論理学入門~三浦俊彦 日本放送出版協会) まず、テキストの記載には、同規則については下記のようにありました。  主演算子が≡であるトートロジーの左辺と右辺は、任意の命題の中で  互いに置換可能である。A≡Bがトートロジーであるとき、真理関数的命題Cの  中に出てくるAをBで置き換えた命題をDとすると、CからDを推論してよい。 と書かれ、具体例として次のように記載されていました。  ¬(P∨Q)∧(P⊃¬R)から、「ド・モルガンの法則」を用いて、  (¬P∧¬Q)∧(P⊃¬R)を推論してよく、  さらに対偶律により、(¬P∧¬Q)∧(¬¬R⊃¬P)を推論してよく、  さらに、二重否定式により、(¬P∧¬Q)∧(R¬P)を推論してよい。 理解できない箇所は、同値式導入規則の定義で言われている 命題Cや、その中に出てくるAやBといった要素、更に命題Dが何を 指示しているのかが、上記の具体例から読み取れません。 ¬(P∨Q)∧(P⊃¬R)が、「ド・モルガンの法則」により、  (¬P∧¬Q)∧(P⊃¬R) に等しく、また、対偶律により、  (¬P∧¬Q)∧(¬¬R⊃¬P)  に等しく、さらに二重否定式により、  (¬P∧¬Q)∧(R¬P)  と等しいことは理解できるのですが、テキストの 文言から、指示語の対象内容が理解できません。 大変お恥ずかしい限りですが、お知恵の拝借をお願いいたします。

  • 恒真式の真理表について

    質問させていただきます。 真理表についてわからなくて、大変困ってしまっています。下記の論理式を真理表にするのでうが…わかる方、教えてください。よろしくお願い致します。 1 ((P → Q)・(-P → R)) → ((Q・-P) v (R・P)) 2 ((P・Q) v (P・R)) → (Q・R)

  • 論理式が恒真式であるか吟味する問題で

    ●(pV●q)⊃((●pVq)V(●p∧●q)) (●には、「でない」を表す“「”を90度回転させたような記号が入ります) が恒真式であるか吟味する問題なのですが、 論理式の場合も、()を先に考えれば、良いのでしょうか? (pV●q)...A,(●pVq)...B,(●p∧●q)...C と仮定したら、ABCを計算→BVC...Dを計算→●A⊃Dを計算 みたいな流れで良いのかという事です。 また、恒真式であるかの吟味は、真理表を作って考えればいいのかなと思ってますが、あってますか? 論理式の勉強を最近始めたばかりで、よくわかりません。 論理式をわかりやすく解説しているサイトとかも教えて頂けたら嬉しいです。 わがままですが、優しくご教授頂けると嬉しいです。 お願いします。

  • 論理式の問題がわかりません

    最近、独学で論理式の勉強を始めました。 ((p⊃q)⊃¬r)⊃(r⊃(¬p∨¬q)) という恒真式かを確認する問題で躓いています。 真理表を書き、()の中を先に求めるのはわかっています。 わからないのは、()で書いた後の真理表というか、解き方です。 上記の問題で言えば、 (p⊃q)の真理表を書いた後(これをAとする)、A⊃¬rを確認、 後半部分も同様に(¬p∨¬q)の真理表を書き(これをB)、r⊃Bをして、 前半⊃後半をすればいいのだろうとは思います。 ただ、これの真理表がどんな感じになるのかがわからないのです。 (p⊃q)をAとおく。などと書いて、A⊃¬rの真理表を書き、これをCとおく。 後半も同じ事をして、最終的にC⊃Eみたいな感じで書けばいいのですか? それとも、ちゃんと((p⊃q)⊃¬r)での書き方みたいなのがあるんでしょうか? 説明が下手でごめんなさい。 誰か教えて下さい。 また、解き方が違っていたら、教えてくれると嬉しいです。 よろしくお願いします。

  • 論理学について

    論理学の命題論理式の真理表がよくわかりません。 (PかつQかつR)ならば¬(¬Pかつ¬Qかつ¬R) この時、どうなりすか? ご教授お願いします。 

  • 論理式は真理表を使わないと証明できないでしょうか?(「P→『Q∨R』」⇔「『P∧¬Q』→R」)

    お世話になります。よろしくお願いします。 今まで私は 論理式といえば (1)「P→Q」⇔「¬Q→¬P」(対偶) (2)「P→Q」⇔「¬P∨Q」 の2つしか知りませんでした。 そして最近数学の証明問題で大変便利な (3)「P→『Q∨R』」⇔「『P∧¬Q』→R」 というものを知りました。 確か先の(1)、(2)は真理表を使って証明した記憶があるのですが、 (3)は文字が3つなので、真理表での証明はとても大変だと思います。 (3)は結構当たり前の事実のような気がするのですが、もっと簡単に証明する方法はないでしょうか? よろしくお願いします。 また(1)、(2)、(3)以外に数学を証明するのに役に立つ論理式をご存知でしたら是非教えてください。 こちらも合わせてよろしくお願いします。

  • 論理式

    (P ∧ ¬Q)→P (1) 上の論理式が恒真か否か示せ。 (2) 上の論理式が証明可能か否か示せ。 (1)(2)どちらかでも分かる方がいらっしゃいましたら 教えていただきたいです

  • 論理式を作る!

    次の条件を満たす最短の論理式を作りたいんですが、 うまく作れません>< 1)p,q,rで2つ以上が真なら真、2つ以上が偽なら偽の論理関数 カルノー図より、pq+pr+qrという論理式を導き、 これをp(q+r)+qrとしました。これ以上は無理でしょうか? 必要ならば、→、≡、排他的論理和も使えます。 また 2)p,q,r,sのうち、いずれか3つが真で、そうでなければ偽となる論理関数 の論理式を導きたいんですが、これはカルノー図も使えません>< ご教授ください。