- ベストアンサー
不等式の問題です。
不等式の問題です。 xについての不等式2x-k≧|3x+4|が解を持つとき、定数kの値の範囲は(ア)である。このとき、この不等式を満たすxの範囲をkを用いて表すと(イ)である。 という問題で、次のように解答したのですが、どうも説明がしっくりいっていない気がするので、指摘して頂けたら幸いです。宜しくお願いします。 (まずy=|3x+4|のグラフを書きました。) ここで、y=2x-kが(-4/3,0)を通る時のkの値は、 0=2×(-4/3)-k,k=-8/3 よって、(0,8/3)を通る。 したがって、与えられた不等式が解をもつ時のkの値の範囲は、-k≧8/3より、(ア)k≦-8/3 また、この不等式を満たすxの範囲は、 (1)x≧-4/3の時、2x-k≧3x+4,x≦-k-4 (2)x<-4/3の時、2x-k≧-(3x+4),x≧(k-4)/5 (1)(2)より、(イ)(k-4)/5≦x≦-k-4
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
解答もあっていますし、しっくりいく説明と思います。
お礼
回答ありがとうございます。 不安だったので良かったです^^ ありがとうございました!!