• ベストアンサー
  • 困ってます

奈良大学の数学の問題です。

奈良大学の数学の問題です。 xの二次方程式x^2+(a+1)x+a+1/4=0 (以後(1)とする)、x^2+(a-1)x-a^2+b=0((2))がある。 (1)が実数解を持つ時、(2)も必ず実数解をもつようなbの値の範囲を求めよ。 解)  (1)が解を持つようなaの範囲は(分かっているので略)a≦0または2≦a  このaの範囲において(2)も必ず実数解をもつbの範囲を求める。  (2)の判別式をDとすると(2)が実数解をもつ時(略)b≦5/4(a-1/5)+1/5 ここからがいまいちピンときません。解答にはb=5/4(a-1/5)+1/5として、a≦0または2≦aの範囲でとる最小値はa=0のとき1/4だからb≦1/4とあります。 『b=5/4(a-1/5)+1/5のとき、a≦0または2≦aの範囲でとる最小値はa=0のとき1/4』はわかりますが、なぜここで『b=5/4(a-1/5)+1/5として』『だからb≦1/4』がわかりません。 a≦0または2≦a、b≦5/4(a-1/5)+1/5をab平面に図示して二つの領域が重なるときのbの範囲は…と考えていたのですが、この考え方は違うのでしょうか。教えてください。 (数学が苦手なので、一度答えてくださっても、また質問を返すかもしれません。すみません)

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数76
  • ありがとう数7

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

(2)の判別式から 5a^2-2a+1-4b≧0 5a^2-2a+1の部分が 5a^2-2a+1=5(a-1/5)^2+4/5 のように平方完成できますよね a=1/5のとき最小値4/5 しかし考えればよいのは、a≦0、2≦aの範囲では 最小値はa=0のとき1です つまり5a^2-2a+1の最小値は1 5a^2-2a+1-4b≧0  1-4b≧0となるためには 1/4≧b

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。先に答えてくださったのでこちらをベストアンサーといたします。

質問者からの補足

すみません、やっぱり疑問が出てきたので質問します。 なぜ5a^2-2a+1の最小値を出す必要があるのでしょうか?

関連するQ&A

  • 最大値最小値

    実数a,b,c,dについて、 a^2+b^2+c^2+d^2=1・・・(1) a+b+c+d=1・・・・(2) が成り立つとき、abの値の最大値最小値を求めよ。 次のように考えましたが、自信がありません。 よろしくお願いします。 a+b=s, ab=t とおく。 a,bを解とする方程式、x^2-sx+b=0 が実数解を持つから 判別式から、t=<s^2/4 ・・・(3) また(1)と(2)から、c+d=1-s、cd=s^2-s-t/2 c,dを解とする方程式、x^2-(1-s)x+(s^2-s-t/2)=0 が実数解を持つから 判別式から、t>=s^2-2s-1・・・(4) (3)(4)を満たすtの範囲から、最小値はs=1のときで、-2,最大値は(3)と(4)の交点から s=(4+2√7)/3のときで、(16+4√7)/9 何か条件を落としているような気がします。よろしくお願いします。

  • 三角関数の問題

    aは実数の定数、0≦θ≦2πの範囲において、 cos2θ-4(a+1)cosθ-4a-1=0 を満たす異なるθの個数を求めよ。 という問題で、 cos^2θ-2(a+1)cosθ-2a-1=0 t=cosθとおく t^2-2(a+1)t-2a-1=0 判別式は d/4=(a+2)^2-2 グラフを図示する (1)-2-√2<a<-2+√2 ではtは解なし (2)a=-2-√2,-2+√2 でtはそれぞれ1つずつ解を持つ (3)a<-2-√2,-2+√2<a でtはそれぞれ2つずつ解を持つ ここまでは分かるのですが、-1≦t≦1の処理とtの値に応じたθの 個数の求め方などが良く分かりません。 分かる方お願いします。

  • 二つの二次方程式の共通の解

    aを実数とし、2つのxの二次方程式 x^2+(2-3a)x+2a^2-3a+1=0・・・(1) 2x^2+-2ax-a+1=0・・・(2) (1)と(2)が共通の解xを一つだけ持つとき、aと共通の解xの組みを求めよ 上記のような問題で、(1)=(2)として、判別式を適用させてバツをもらいました。 (1)=(2)として、判別式を適用させる方法がなぜいけないのかを教えてください。

その他の回答 (1)

  • 回答No.2
  • htms42
  • ベストアンサー率47% (1120/2361)

(1)の判別式から  (a-1)^2≧1  (3) です。 (2)の判別式から  (a-1)^2+4a^2≧4b  (4) です。 (3)を満たすaのすべてに対して(4)の成り立つbの範囲を求めるのですから(4)の左辺の最小値が分かればいいです。 (3)よりa≧2、a≦0ですから、a^2≧0 です。  これより、(a-1)^2+4a^2≧1 (等号はa=0のとき) です。  よって 1≧4b b≦1/4です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 数学の問題がわかりません^^;教えてください。

    [問題(1)] xについての2次方程式(x-1)(x-2)+(k+a)x+a=0はk≧1であるすべての実数kに対して実数解をもっている。このとき,実数aの範囲を求めよ。 ≪自分の解答≫ x^2+(k+a-3)x+a+2=0という風にまとめて、これから(判別式)使う名かな…と思ったのですが、なんか違うみたいで…。お願いします。 [問題(2)] 4次方程式x^4-2x^3+bx^2-2x+1=0が実数解をもつようなbの値の範囲を求めよ。また,ちょうど3つの実数解をもつとき,bの値と解を求めよ。 ≪自分の解答≫ 初めの方は2次方程式だと(判別式)≧0でいいと思うのですが、4次方程式であと考えられません^^; あと方も、グラフを書いて考えるのかなぁ…と思うのですが、いまいちぴんと来ないのです^^;よろしくお願いします。

  • 軌跡

    実数a,bがa ^2+b ^2+2a+2b-2=0を満たしながら変化するとき、(a+b,ab)を座標するとする点P(x,y)は、どのような曲線を描くかその軌跡を求めよ。 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ a ^2+b ^2+2a+2b-2=0‥(1) 題意より、 x=a+b‥(2) y=ab‥(3) (1)より(a+b)^2 -2ab+2(a+b)-2 (2)(3)を代入して x^2 -2y+2x-2=0 ∴y=1/2x^2 ++x-1‥(4) (2)(3)よりa,bを二解にもつ二次方程式は t^2 -(a+b)t+ab=0 つまり t^2 -xt+y=0‥(5) a,bは実数であるから、tの二次方程式(5)は実数解を持たなければならない よって判別式をDとして D=x^2 -4y≧0‥(6) (4)を(6)に代入して x^2 +4x-4≦0 2-2√2≦x≦-2+2√2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ この問題で a,bを二解にもつ二次方程式はt^2 -(a+b)t+ab=0 t^2 -xt+y=0‥(5) a,bは実数であるから、tの二次方程式(5)は実数解を持たなければならない よって判別式をDとして D=x^2 -4y≧0‥(6) の部分がよくわかりません。(5)は二つの実数解をもって、判別式DはD>0ではないのですか。

  • 数学の定理や概念でただし書きの場合分けをなくしたい

    たがいに平行でない平面2直線は交点を一つ持つが、たがいに平行な二つの平面直線 ax + by + c = 0 と ax + by + d = 0 は c = d で完全に一致しなければ実平面上で交点を持たない。 ところが実射影平面において、平行な直線(ただし一致しない)の式を斉次化して、斉次座標で [b, a, 0] = [b/a, 1, 0] という交点を見つけることができます。 では、たがいに一致する二つの平面直線も唯一の交点を持つような理論(ただし、ある程度の意味を持つ)を考えることはできますか? 最高次の係数が0でない実数係数二次方程式は、判別式が正のとき2つの解、判別式が0のとき1つの解、判別式が負のとき0つの解をもつ。 ところが、判別式が0のときは重解の概念、判別式が負のときには複素数の概念を考えることで、判別式の符号にかかわらず、2つの解を持つと考えることができます。 では、最高次の係数が0の二次方程式も2つの解をもつというような理論(ただし、ある程度の意味を持つ)を考えることはできますか?

  • 実数解と判別式

    実数解と判別式 数学の問題をくときによく見かける判別式ですが。その意味がよく分かりません。例えば、 a,bを実数としてP=a^2+b^2+ka+lb+m・・・(k,l,mは定数でいいです。)という式があるときbが実数として存在するようなaの範囲は~・・・みたいなやつです。 そういうとき、bについて降べきの順に並べ替えて判別式~とかってやりますよね。 あれってなんでbについて整理するんですか?aについて整理して判別式を用いた場合とどういう数学的意味の違いが出てくるのでしょうか?そりゃもちろんbについて整理して(二次方程式の形とでも言いましょうか?)判別式を使わないとaについての不等式が出てこないというのは分かりますが。その意味がよく分からないのです。ようは、どの文字に着目して考えていくかということです。 わかりにくくてすみませんよろしくお願いします。

  • 数学の問題が分からないです・・・

    数学の問題が分からなくなってしまいました・・・ 解答見ても、答えしか書いてなくて・・・(泣) この問題です。 〈二次方程式〉 Xの二次方程式 x&#178;+2ax&#65293;18a+27=0…(1)と x&#178;&#65293;ax&#65293;4=0…(2)について、(1)の解の1つがaであるとき、aの値と(2)の解を求めなさい。 です。 どなたかお願いします。

  • 実数解

    3つの2次方程式は少なくとも1つは実数解を持つことを示す問題です。 だたし、a,b,cは実数とします。 (x^2)+3ax+2b-1=0 …(1) (x^2)+2bx+2c-1=0 …(2) (x^2)+2cx+2a-1=0 …(3) (1)の判別式は D/4=(a^2)-2b+1 (2)の判別式は D/4=(b^2)-2c+1 (3)の判別式は D/4=(c^2)-2a+1 となりましたがどのようにして少なくとも1つは実数解ということを探すのでしょうか?

  • 数学Iの問題です

    二次方程式f(x)=x^2-(a-2)x+a/2+5=0が 1≦x≦5の範囲に異なる2つの実数解をもつ時、 定数aの値の範囲を求めよ まず異なる実数解が二つということで判別式D=0 また1≦x≦5の範囲ということでf(1)≧0、f(5)≧0 最後にf(0)>0 という3つの条件でよろしいのでしょうか?

  • 数II図形と方程式の単元の問題解説

    X^2 + 2y^2 = 1 の範囲を満すとき、x+y^2の最大値、最小値を求める問題において、x+y^2= tとおいて、x^2+2y^2=1に代入してxの二次方程式にする。そこで、判別式から実数解を求めるための条件からtの範囲を求めると最大値は出ます。図形的に見れば楕円と放物線の交点になるので、判別式で最大値、最小値が求められると思うのですが、なぜ判別式からは最小値が出ないのか、解説をお願いします。

  • 2次関数

    解答がなく困ってます。どなたか添削お願いしますm(_ _)m aを0でない定数とする2つの方程式 ax^2-4x+a=0,x^2-ax+a^2-3a=0 について、次の条件を満たすaの値の範囲をそれぞれ求めなさい。 1.2つの方程式がともに実数の解をもつ。 2.どちらかの一方の方程式だけが実数の解をもつ。 *自己解答* 【2次方程式 ax^2+bx+c=0において、判別式D=b^2-4ac】【ax^2-4x+a=0を(1)】【x^2-ax+a^2-3a=0 を(2)】とする。 1.(1)(2)共に実数解なので、判別式も共にD≧0となる。 (1)の判別式16-4a^2≧0→(a-2)(a+2)≦0→-2≦a≦2 (2)の判別式a^2-4a^3+12a^2≧0→解き方が分からず a^2(4a-13)≦0 としてしまいました。→0≦a≦13/4 よってa≠0より 0<a≦2 2.(1)のみが実数解をもつ時 (1)の判別式D≧0→-2≦a≦2 (2)の判別式D<0→a<0または13/4<a よって -2≦a<0 (2)のみが実数解をもつ時 (1)の判別式D<0→a<-2または2<a (2)の判別式D≧0→0≦a≦13/4 よって2<a≦13/4 となったのですが、(2)の判別式が曖昧です。 社会人になってからの勉強ですので相当ブランクがあります。解説と併せてよろしくお願いします。

  • 数学の問題です。

    数学の問題です。 「次の二次方程式が重解をもつような定数kの値とその重解を求めよ。」 2x^2 - 2kx - k + 2 = 0 ************************************************************ 「次の二次方程式の実数解の個数は、定数kの値によってどのように変わるか。」 x^2 + 5x + k = 0 x^2 - 2( k + 1 )x + k^2 + 3 = 0 全部で三問です。 プリントでコレれらの問題で迷いました。 お願いします。