• ベストアンサー
  • すぐに回答を!

高校数学の問題です。

pを実数の定数として、2次方程式 x^2-px+p=0 ・・・(*) がある。 (1)(*)が異なる2つの実数解をもつとき、pのとり得る値の範囲を求めよ。 (2)(*)の2つの解をα、βとおくとき、 A=α^2-4α、B=β^2-4β とする。 (i)A+B、AB をそれぞれpを用いて表せ。 (ii)AB<0 となるようなpの値の範囲を求めよ。 (3)pの値が(1)で求めた範囲にあるとき、(*)の2つの実数解 α、βについて、4次方程式 (x^2-αx+α)(x^2-βx+β)=0 ・・・(**) を考える。 (**)の異なる実数解の個数をpの値によって分類して求めよ。 解説お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数123
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

(1) (*)の判別式 p^2-4p>0 とおくとp<0、4<p (2) まず、α、βが(*)の解であることから、α+β=p、αβ=p です。 A+B=α^2-4α+β^2-4β    =α^2+β^2-4(α+β)    =(α+β)^2-2αβー4(α+β)    =p^2-2p-4p    =p^2-6p AB=(α^2ー4α)(β^2-4β)   =α^2β^2-4α^2βー4αβ^2+16αβ   =(αβ)^2-4αβ(α+β)+16αβ   =p^2-4p^2+16p   =-3p^2+16p AB=-3p^2+16p   =-p(3p-16) なのでAB<0を満たすpの範囲は 0<p、16/3<p (3) x^2-αx+α=0、x^2-βx+β=0の判別式はそれぞれA,Bと等しくなります。ここで pが(1)の範囲で変化した場合のAB、およびA+Bの符号を調べると            A+B   AB p<0        >0    <0 4<p<16/3   <0    >0 p=16/3     <0    =0 16/3<p<6   <0    <0 p=6        =0    <0 p>6        >0    <0  このうち、AB<0となるとき、つまりp<0の場合AとBは異符号、つまり片方が正、片方が負なのでx^2-αx+α=0、x^2-βx+β=0は片方が異なる二つの実数解を持ち、片方が実数解なしとなります。この場合(**)の異なる実数解は2個となります。  次にAB>0のとき、つまり4<p<16/3のときAとBは同符号で、A+Bが負なのでA,Bは両方とも負になります。このとき(**)は実数解を持ちません。  さらにAB=0の場合、つまりp=16/3の場合A+Bが負なので片方が負、片方がゼロになります。このとき(**)は実数解を一つ持ちます。     

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学の問題がわかりません^^;教えてください。

    [問題(1)] xについての2次方程式(x-1)(x-2)+(k+a)x+a=0はk≧1であるすべての実数kに対して実数解をもっている。このとき,実数aの範囲を求めよ。 ≪自分の解答≫ x^2+(k+a-3)x+a+2=0という風にまとめて、これから(判別式)使う名かな…と思ったのですが、なんか違うみたいで…。お願いします。 [問題(2)] 4次方程式x^4-2x^3+bx^2-2x+1=0が実数解をもつようなbの値の範囲を求めよ。また,ちょうど3つの実数解をもつとき,bの値と解を求めよ。 ≪自分の解答≫ 初めの方は2次方程式だと(判別式)≧0でいいと思うのですが、4次方程式であと考えられません^^; あと方も、グラフを書いて考えるのかなぁ…と思うのですが、いまいちぴんと来ないのです^^;よろしくお願いします。

  • 解き方がわかりません( ´;ω;`)

    1) 2つの2次方程式 x²+ax+a+3=0 , x²-ax+4=0 がともに虚数解をもつとき、定数aの値の範囲を求めよ。 2) 2つの方程式 x²+2ax+a+2=0 , x²-4x+a+3=0 のうち、どちらか一方だけが実数解をもつように、定数aの値の範囲を定めよ。 3) a , b , c を定数とする。 2次方程式 ax²+bx+c=0は、2次の係数aと 定数項cが異符号ならば、異なる2つの実数解をもつことを示せ。

  • わからないので教えてください(´・ω・`)

    2つの2次方程式 x²+ax+a+3=0 , x²-ax+4=0 が ともに虚数解をもつとき、定数aの値の範囲を求めよ。 2つの方程式 x²+2ax+a+2=0 , x²-4x+a+3=0 のうち、どちらか一方だけが実数解をもつように、定数aの値の範囲を定めよ。 a , b , c を定数とする。 2次方程式 ax²+bx+c=0は、2次の係数aと 定数項cが異符号ならば、異なる2つの実数解をもつことを示せ。

  • 高校数学の問題です。

    (問題1) tを実数とする。xについての方程式x+1/x=t が相異なる2つの正の解をもつためのtの値の範囲を求めよ。 (問題2) aを実数とする。xについての4次方程式x^4-ax^3+(a+4)x^2-ax+1=0 が相異なる4つの正の解をもつためのaの値の範囲を求めよ。 (問題3) 底面が半径3cm,高さ6cmの円錐を,高さを3等分する点を通り,底面に平行な平面で3つの部分P,Q,Rに分ける。このとき、Qの部分の体積を求めなさい。 という問題です。 どなたかできる方、説明よろしくお願いします。

  • 2次方程式

    2つの2次方程式 x^2+x-a=0⋯⋯(1) 2x^2+5x+2a+1=0⋯⋯(2) がある。 ただしaは定数とする。 方程式(1)(2)のうち、一方が実数の解をもち、かつ他方が実数の解をもたないとき、aの値の範囲を求めよ。 これがわかりません。おしえてください。

  • 至急教えてください。数学の問題が解けません!

    数学の問題に苦戦しています。 解き方、解答を教えてください。 xの2次方程式 x2+(a+2)X+a2+aー6=0が異なる2つの正の実数解をもつように 定数aの値の範囲を求めよ ※x2はx(2乗)です。 ※a2はa(2乗)です。

  • 高校の数学を教えてください。

    方程式2x2+(a-1)x+(a+1)2=0について ※2xの2乗+(a-1)x+(a+1)の2乗=0です。 (2) 実数解をもつとき,その実数解のとりうる値の範囲を求めよ。 がわかりません。  実は,問題集に乗っていた問題なので解答があります。解答には,与式をaの2次方程式:a2+(x+2)a+2x2-x+1 とみて,aが実数解をもつため判別式D=(x+2)2-4(2x2-x+1)>=0の条件から 答:0<=x<=8/7(xは0以上8/7以下)としています。  xが実数解をもつという条件で考えるはずなのに,解答はaが実数解をもつ条件を考えています。さっぱりわかりません。おわかりになる方,ご教授願えませんでしょうか。よろしくお願いします。  ちなみに,(1)は, 「2つの整数解をもつように,定数aの値を定め,その解を求めよ。」です。

  • 数2の問題(複素数と方程式)を教えてください。

    数2の問題(複素数と方程式)を教えてください。 問題 aを実数の定数とする。4次方程式  x^4-ax^3+(a+7)X^2-ax+1=0 ・・・・・(1) について、次の質問に答えよ。 [1]t=x+(1/x)とおくとき、方程式(1)をtの2次方程式に直せ。 [2]方程式(1)が2重解をもつとき、aの値をすべて求めよ。 [3]方程式(1)が異なる4つの正の解をもつとき、aのとり得る値の範囲を求めよ。 という問題です。 [1]だけやってみましたが、[2][3]はわかりません。 解説と模範解答をよろしくお願いします。 解答 [1]与えられた方程式はx=0を解に持たないから、両辺をx^2で割ると  x^2-ax+a+7-(a/x)+(1/x^2)=0  ⇔ (x^2+(1/x^2))-a(x+(1/x))+a+7=0  ⇔ [(x+(1/x))^2-2]-a(x+(1/x))+a+7=0  ∴t^2-at+a+5=0 (答)

  • 2次方程式の問題ですm(_ _)m

    2つの2次方程式 x^2+(a+1)x+a^2=0……(1) x^2+2ax+2a=0……(2) について,次の各問いに答えよ。ただし,aは定数である。 (1) (1)と(2)がともに解(実数解)をもつような定数aの値の範囲を求めよ。 (2) (1)と(2)のうち少なくとも1つの方程式が解(実数解)をもつような定数aの値の範囲を求めよ。 (3) (1)と(2)がともに解(実数解)をもたないような定数aの値の範囲を求めよ。 (4) (1)と(2)のうち1つの方程式だけが解(実数解)をもつような定数aの値の範囲を求めよ。 どなたかご解答をお願いいたします…;; 解答して頂いたら喜び過ぎて頭蓋骨が脱臼しそうです;;

  • 数2の問題(複素数と方程式の範囲)を教えてください。

    数2の問題(複素数と方程式の範囲)を教えてください。 aを実数の定数とする。方程式  (x^2-2x)^2-2(a+2)(x^2-2x)+4a+20=0 ・・・・・(1) について、次の各問に答えよ。 1.tを実数の定数とする。2次方程式x^2-2x=tが異なる2つの実数解をもつとき、  tのとり得る値の範囲を求めよ。 2.方程式(1)が異なる4つの実数解をもつとき、aのとり得る値の範囲を求めよ。 3.方程式(1)が実数解をもたないとき、aのとり得る値の範囲を求めよ。 という問題です。 1.は  x^2-2x=t ⇔ x^2-2x-t=0 より、この方程式の判別式をDとすると  D/4=1+t であり、異なる2つの実数解をもつのは、D>0のときであるから  1+t>0 ⇔ t>-1 (答) としてみましたが、これでいいのか自信ありません。 2.、3.はどうしたらよいかわかりません。 解法と解説をよろしくお願いします。