• ベストアンサー

曲面積の積分について

D=((x,y);x^2+y^2<=a^2) 上において、 z=bx^2+cy^2 の曲面積を求めたいのですが、なかなかうまくいきません。 ∬D(√(1+4b^2*x^2+4c^2*y^2))dxdy と立式できても、極座標変換で√の中身が整理されません。解法の方向性だけでも教えていただけませんでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

x=rcos(t)/(2b),y=rsin(t)/(2c) (r>0,0≦t≦2π)と置換積分する。 √(1+4b^2*x^2+4c^2*y^2)=√(1+r^2), dxdy=|J|drdt={r/(4bc)}drdt I=∫[0,2abc/√(b^2+c^2)] {1/(4bc)}r√(1+r^2)∫[0,2π] dtdr ={π/(2bc)}∫[0,2abc/√(b^2+c^2)]r√(1+r^2)dr ={π/(2bc)}[(1/3)(1+r^2)^(3/2)] [0,2abc/√(b^2+c^2)] ={π/(6bc)}[{1+(4(abc)^2/(b^2+c^2))}^(3/2)-1]

rainhater
質問者

お礼

その置換積分も考えたのですが、積分範囲がどう変えたら良いかに悩んで結局挫折してしまいました(- -;) 大変助かりました。どうもありがとうございました。

その他の回答 (1)

  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

方針は宜しいのではと思います。 ∫[0,2π]dθ∫[0,a]√(1+4r^2)rdr を計算する事になる。

rainhater
質問者

お礼

ありがとうございました。

関連するQ&A

  • 数学 積分

    (1)I=∬D tan[{π(x^2+y^2)}/4]dxdy D:0≦x^2+y^2≦1 (1)は極座標変換を用いること (2)I=∬D zsin[{π(x^2+y^2+z^2)}/2]dxdydz D:0≦x^2+y^2≦1,0≦z≦1 (2)は円柱座標変換を用いること (3)I=∬D 1/(x^2+y^2+z^2)^(1/2)dxdydz D:1≦x^2+y^2+z^2≦16,x≧0,y≧0,z≧0 (3)は球面座標変換を用いること 回答、よろしくお願いします

  • 曲面積 積分

    (1)曲面z^2=4axが柱面y^2=ax-x^2によって切り取られる部分の曲面積(a>0) (2)曲面x^2+y^2=2zの2平面z=0,z=1の間にある曲面積 (ヒント;極座標変換を使う) (3)柱面x^2+y^2=axによって切り取られる球面x^2+y^2+z^2=a^2の部分の曲面積(a>0) (4)2つの円柱x^2+z^2=a^2,y^2+z^2=a^2の共通部分の曲面積(a>0) (ヒント;S=16S1として0≦y≦x≦aの領域の曲面積S1を求める) この問題をといてください、お願いします。 積分範囲の出し方も詳しく説明してくれれば幸いです。

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 曲面積

    (1)x+y+z=1    x、y、z>=0の部分の面積   答えは√3/2とあるのですが以下のような考えだとどこが間違っているのでしょうか?   z=1-x-y D={0<=x<=1 0<=y<=1}とすると zx=-1 zy=-1 S=∫(0→1)dx∫(0→1)√3 dy  =√3 (2)x^2+y^2=a^2(a>0)の内部にある円柱面x^2+z^2=a^2の表面積   上記の面積を表す式のf(x、y)としてz=√(a^2-x^2)   D={x^2+z^2<=a^2} と考えたのですが計算途中で明らかにややこしく、間違っているのだと思いました   どのように考えればよいのでしょうか? (3)錐面x^2+y^2=z^2z (z>=0)が球面x^2+y^2+z^2=a^2 (a>0)により切り取られる面積    これについてはお手上げです。何をf(x,y)にするのかDが何かもわかりません。   どなたかご教授頂けたら幸いです。

  • 側面積の重積分

    立体Iの側面積 I=∬D√(1-x^2-y^2)dxdy D=(x^2+y^2)≦x 途中経過もお願いします。

  • 重積分を使って曲面積を求める問題でわからないところがあります。

    重積分を使って曲面積を求める問題でわからないところがあります。 球面x^2+y^2+z^2=a^2の円柱x^2+y^2=axで切りとられる部分の曲面積を求めよ(a>0) 自分の解法は  z(>0)について解いてz=√(a^2-x^2-y^2),積分領域D:x^2+y^2<=axの上にある曲面積を2倍して Zx=-x/(a^2-x^2-y^2), Zy=-y/(a^2-x^2-y^2)より 求める曲面積s=2∬D √(1+Zx^2+Zy^2)dxdy ここでx=rcosθ,y=rsinθと置くとJ=r,積分領域DはM:0<=r<=acosθ,-π/2<=θ<=π/2 S=∫(-π/2→π/2)∫(0→acosθ)ar/√(a^2-r^2)drdθ =2a^2[θ+cosθ](-π/2→π/2)=2a^2π となったのですが、解答は D:x^2+y^2<=a^2,y>=0の上にある曲面積を4倍して求めていて、 S=4∫∫D a/√(a^2-x^2-y^2)dxdy ここでx=rcosθ,y=rsinθと置いて、M:0<=r<=acosθ,0<=θ<=π/2 S=4∫(0→π/2)∫(0→acosθ)r/√(a^2-r^2)drdθ =4a^2[θ+cosθ](0→π/2)=4a^2(π/2-1) となって答えが違ってしまうのですが、何故だかわかる方がいたら助けてください。

  • 2重積分について

    (1) ∬D x^2dxdy ただしD: x+y≦2 x≧0 y≧0 (2) ∬D sin(x+y)dxdy ただしD: 0≦x≦π/2 x≦y≦π-x (3) 極座標を使って∬D ydxdyを求めよ。 ただしD:y≧0 1≦x^2+y^2≦4 この問題がわかりません。 変数変換すると思うのですがどの用にしたらいいのでしょうか。

  • 二重積分

    ∬D (xy-y) dxdy [D:(x-1)^2+(y-1)^2≦1]です。 極座標での変換の仕方がわからなかったので、:x-1=X、y-1=Yなんて置いてみたりしましたがうまくいきません。 明日テストなんです; お願いします。 どう解けばいいのですか

  • 広義積分 球面座標変換 数学

    (1)~(3)の広義積分を解いてください、お願いします (1) I=∬∫D 1/(x^2+y^2+z^2)^2 dxdydz D:1≦x^2+y^2+z^2,x≧0,y≧0,z≧0 (1≦x^2+y^2+z^2≦a^2,x≧0,y≧0,z≧0として球面座標変換を行う) (2)I=∬D {log(x^2+y^2)}/(x^2+y^2)^(1/2) dxdy D:0≦x^2+y^2≦4,x≧0,y≧0 (3)I=∬D {e^-(x^2+y^2+z^2)}/(x^2+y^2+z^2)^(1/2) D:1≦x^2+y^2+z^2,x≧0,y≧0,z≧0 (4) I=∬[D] 1/(x^2+y^2+z^2)^(1/2)dxdydz D:{(x,y,z)|1≦x^2+y^2+z^2≦16,x≧0,y≧0,z≧0} 球面座標変換を用いること 球面座標変換 x=rcosφsinθ, y=rsinθsinθ, z=rcosθ を用いること D ⇒ E:{(r,θ,φ)| 0≦r≦4, 0≦φ≦π/2, 0≦θ≦π/2} E:{(r,θ,φ)| 1≦r≦4, 0≦φ≦π/2, 0≦θ≦π/2}なぜこうならないのかも教えてください

  • 積分について

    積分について 受験問題の積分の分野で悩んでお聞きします 1.(x^2 + y^2)^2 = 2(x^2 - y^2) (1)この曲線がx軸とy軸に対称なことを示す (2)極座標系を用いて曲線を示す 2.∫∫D { y / (1 + y^2)(1 + xy)^2 } dxdy (1)D = { (x,y) | 0 <= x <= y, y <=1}の二重積分を求めよ という問題が解りません 今回の問題は全く解法が解りません そのため、解法が解る方が居ましたしたら、お手数ですが計算過程を含めて教えて下さい よろしくお願いします