• ベストアンサー
  • すぐに回答を!

三角関数

3cos^2θ+4sinθcosθ+3sinθ+6cosθ+3 t=sinθ+2cosθ とおいてyをtを用いて表せ という問題なんですが。 3sinθ+6cosθ=2tというのはわかるんですが前の3cos^2θ+4sinθcosθガどうやってやればいいのか解りません。 どうか教えてくださいお願いしますm(__)m

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数62
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • debut
  • ベストアンサー率56% (913/1604)

t=sinθ+2cosθ の両辺を2乗すれば t^2=sin^2θ+4cos^2θ+4sinθcosθ  =sin^2θ+cos^2θ+3cos^2θ+4sinθcosθ  =1+3cos^2θ+4sinθcosθ なので、3cos^2θ+4sinθcosθ=t^2-1 とできます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

4cos^2θ=cos^2θ+3cos^2θ でしたね^^; 盲点でした。ありがとうございました!

関連するQ&A

  • 教えてください(三角関数)

    数学の三角関数で二進も三進も行かないくらいわからない問題があったのでどなたか教えていただけないでしょうか。 (英語から訳したものなので日本語があっていなかったら申しわけありません) 次の式を-180°≦θ≦180°の範囲内で答えなさい。 また、回答は小数点1で答えなさい。 1)4(2+cos^2θ)=sinθ(11+sinθ) 2)2cos^3θ=3sinθcosθ 3)4sinθcosθ(1+sinθ)=11cos^3θ-7cosθ 次の式を0≦θ≦2πの範囲内で答えなさい。 1)4tan^3θ-4tan^2θ+tanθ=0 2)2sinθtanθ=sinθ+cosθ どれか一つでもいいので、わかる方がいらっしゃいましたら(ヒントだけでもいいので)教えていただけませんでしょうか?

  • 三角関数

    先程も質問させていただいたのですが、まだ三角関数で引っかかるところがあったので質問させてください。 全ての式においてθを求めます。 1)次の式を0°≦θ≦360°の範囲内で答えなさい。 sin^2θ-5sinθcosθ=0 sinやcosに統一すべきなのでしょうが、どのようにして統一したらいいかが判りません。 2)次の式を-π≦θ≦πの範囲内で答えなさい。 tan^3θ-4tan^2θ+tanθ+6=0 こちらは既にtanに統一されているのですが、3乗の処理の仕方や、正直何をすべきだかが判りません。 3)次の式を-180°≦θ≦180°の範囲内で答えなさい。 2cos^3θ=3sinθcosθ この計算は以下までやりました。 2cos^3θ/cosθ=3sinθcosθ/cosθ 2cos^2θ=3sinθ 2(1-sin^2θ)=3sinθ 2-2sin^2θ=3sinθ -2sin^2θ-3sinθ+2=0 2sin^2θ+3sinθ-2=0 (2sinθ?????)(sinθ?????) ここでは因数分解ですよね? 最後の質問です(多くて申しわけありません) 3)次の式を0≦θ≦2πの範囲内で答えなさい。 4tan^3θ-4tan^2θ+tanθ=0 この式も一応挑戦してみました 4tan^3θ-4tan^2θ+tanθ/tanθ=0/tanθ 4tan^2θ-4tan^2θ+tanθ=0 tanθ=0 θ=tan^-1(0) θ=0? このような解答になってしまいました。 初歩的なものもありますがお願いいたします。 一問でも良いので、説明していただけたら幸いです。

  • 数学 三角関数

    関数 y=3cosθ+4sinθ (0≦θ≦π/2) について、 (1) yのとりうる値の範囲は□≦y≦□である。 (2) yが最大値をとるとき、sinθ=□、cosθ=□である。 (3) yが最大値をとるとき、z=3sin2θ+4cos2θの値は□である。 □の値を教えてください。 途中計算も欲しいです。 よろしくお願いします。

  • 三角関数

    cos^2θ+√3sinθcosθ=1 (0≦x<2π) で、sinθ=3cosθ を解く際、両辺を二乗して、答えを出したら、間違ってました、なぜでしょうか? sin^2θ=3/4 sinθ=±√3/2 になぜならないのでしょうか?

  • 三角関数について

    皆さんにとっては本当に簡単な問題かもしれませんが ご教授のほどよろしくお願いしますm(--)mペコリ 0°<=θ<2πとする。 sinθ=1/7(7分の1)のとき、 3sin(θ-60°)+3sin(θ+60°)の値という問題なんですが、 参考書等を見てみて、sin(θ-60°)を変形するのかなぁと 思ったんですけど、90°や180°のみの公式で、 しかも大体がcosθに変わってしまうので、 与えられているsinθの値が生かせないと気づいたんですが、 そうなるとどうやって解けばいいのでしょうか? お手数ですが教えてください。お願いします。

  • 三角関数について

    t=√3sinΘ+cosΘで t=?cos(Θ-π/?) とすることが出来 t^2=?cos(2Θ-?π/?)+? となる という問題があるんですけど t=?cos(Θ-π/?) ↑このようにすることは可能ですか? 普通の合成ならcosのところはsinになると思うのですが・・・ あとt^2はどのようにかんがえればよいのでしょうか? ご教示お願いします。

  • 三角関数の問題です。

    0≦x≦180に対し、 x=sinθ+√3cosθ, y=√3sin2θ+cos2θ-2sinθ-2√3cosθ+2とする。 (1)xのとりうる値の範囲を求めよ。 (2)yをxの2次式で表せ。 (3)yのとりうる値の範囲を求めよ。 教えて下さい(..)

  • 三角関数

    3sinθ+4sinθの0≦θ≦πでの最大値は■であり、最小値は■である。また、π/4≦θ≦π/2での最大値は■であり、最小値は■であるという問題で解答に3sinθ+4sinθ=5sin(θ+α) π/4≦θ+α≦π/2よりsin(π/4+α)≧θ+α≧sin(π/2+α)とあるがなぜ符号がさかさまになるんですか??

  • 数II 三角関数 質問です

    0≦θ≦2πのとき、関数 y=4sinθcosθ+3sin^2θ の最大値、最小値を求めよ 2sinθに変形したりしてみましたが分かりませんでした

  • 三角関数。

    こんにちは。 よろしくお願いいたします。 【1】0≦θ≦πのとき、√3sinθ+cosθ=tとおくと、tのとりうる値を求めよ。 これが分からないのですが、解説にはいきなり、 t=2sin(θ+π/6)で・・・ と書いてあるんですが、そこから分かりません。 【2】cos2θ+√3sion2θ=√3 これを合成して2で割ると sin(2x+π/6)=√3/2 が分かりません。