• ベストアンサー

不偏推定量

二項分布に従うランダム変数 Xについて   p = X/n とすると、Var(p) = p(1-p)/n Var(p)の不偏推定量を求めよ

質問者が選んだベストアンサー

  • ベストアンサー
noname#227064
noname#227064
回答No.1

> Var(p) = p(1-p)/n の右辺がランダム変数pになっていますが、pではなく母比率になるはずです。 一番の問題点は、問題文だけで何を質問しているのかがわからない点です。 これだけで終わるのもあんまりだと思いますので、途中までやっておきましょう。 母比率をPで表すとすると、 Var(p) = P(1-P)/n となります。 これを利用します。 P(1-P)/n = Var(p) = E[{p-E(p)}^2} = E(p^2)-{E(p)}^2 = E(p^2)-P^2 = E(p^2)-P+P(1-P) なので、 P(1-P)/n = {P-E(p^2)}/(n-1) ここまでくれば、後は簡単ですよね?

関連するQ&A

  • 不偏推定量

    不偏推定量について、うまく理解できていないようなので手助けをお願いします。 以下の問題に取り組んでいます。 データX1,X2,...,Xn は指数分布Ex[λ^(-1)]から独立に得られている。指数分布Ex[λ^(-1)]の確率密度関数は f(x;λ)= (1/λ)*e^(-x/λ) (x>= 0) , x<0 のときは 0 と表せる。  パラメータλの推定量として T1 = (1/n)Σ(i=1->n) Xn を考える。 T1が不偏推定量であることを示せ。 不偏推定量の定義等などは、授業で教えてもらいなんとなく理解したのですが( E(s^2) = (1/(n-1)) Σ (Xi-X')^2 (X'は推定される平均)などは理解)、問題を解くとなると まったく応用できません。 T1の形から、パラメータは平均(μ)を推定したいのかなぁ それなら、 E(T1)= λ を示せばいいのか? と考えてるのですが、なにか検討違いな気がしてなりません。 何をすればいいか、よくわからず混乱しているのですが、 どなたかアドバイスをいただけないでしょうか。よろしくお願いします。     

  • 不偏分散、ガンマ分布、そして不偏推定量

    X1..Xnは独立で標準分布、期待値μ、分散σ^2。不偏分散s^2=1/(n-1) Σ(Xi - X')^2, X'=1/n ΣXi, で iは1からnまでです。X'はガンマ分布Γ(α、λ)に従い、α=(n-1)/2, λ=(n-1)/(2*σ~2)です。 (a) ガンマ分布を利用して、s^2がσ^2の不偏推定量であることと、その分散を求めよ。 (b) T(k)=k*s^2、kは定数 を考えます。その際に、T(k)の偏り と 分散をσ^2の推定量で表せ。そして、T(k)の 誤差の平方は(MSE)を最小値にするkを求めよ。 と言う問題があります。 最初にs^2=1/(n-1) Σ(Xi^2 - n X'^2)と表し、E(X')=σ^2と言う準備はできたのですが、それ以降さっぱりここ3,4日間考えてますがわかりません。回答は自分で導きたいと思ってますので、アドバイスをいただけないでしょうか?

  • 不偏分散の分布は?

    不偏分散の分布について混乱していますので、ご助言頂けましたら幸甚です。 例えば母集団の分布を正規分布N(μ,σ^2)とした際、 標本平均x(=1/nΣxi)を区間推定する場合、正規分布の再帰性より、標本平均の分布はN(μ,(σ/√n)^2)となることから、μの区間推定が可能と理解しています。 また、若干やり様は異なりますが、標本分散s^2=1/nΣ(x-xi)^2に対し、ns^2/σ^2がΧ2分布に従うことから、σの導出が可能と理解しています。 ここで、上記と同様に、不偏分散(=1/n-1Σ(x-xi)^2)についての分布とは、どのような分布になるのでしょうか? おそらくΧ2分布になると推察しますが、証明できてません。 また、不偏分散の導出方法は、 E[S^2]、即ちS^2の平均と理解していますが、 S^2を確率変数とした際の分布がΧ2分布なのであれば、 このΧ2分布の平均が、不偏分散になってもよさそうですが、 Χ2分布の平均=n ですので、不偏分散とは不一致です。 上記のとおり、整理がついておりませんので、教えて頂けましたら助かります。 特に上記のとおり混乱しておりますので、現在はむしろ、「不偏分散については、点推定でのみ用いるのか?」と考えております。

  • 不偏推定量:平均二乗誤差

    不偏推定量に対して、平均二乗誤差を求める問題で 計算に困っています。 データX1,X2,...,Xnがとある分布から独立に得られています。 ここでパラメータλに対する 不偏推定量 T1=(1/n)Σ(i=1~n)Xiにおいて平均二乗誤差を求める。 平均二乗誤差 =E((T1-λ)^2) =E(((1/n)ΣXi -λ)^2) =E((1/n)^2*(ΣXi-nλ))^2) =(1/n)^2* E((Σ(Xi-λ))^2) ここまではいいのですが E((Σ(Xi-λ))^2)をうまく処理できません。 授業では E((Σ(Xi-λ))^2)=Σ(E((Xi-λ)^2)と処理していたようなのですが、 どうしてもこの式が同値であることに納得いきません。 E((Σ(Xi-λ))^2) = E(Σ(Xi-λ)) * E(Σ(Xi-λ)) = Σ(E(Xi-λ)) * Σ(E(Xi-λ)) = (Σ(E(Xi-λ)))^2 なら 納得いくのですが…これではこの先計算できないなぁと困っている次第です。 もしよろしければ アドバイスをください。よろしくお願いします

  • 最尤推定量の期待値

    以下に挙げました問題は、最尤推定量の期待値を求めて、不偏性が成り立たないことを示すことが趣旨だと思うのですが、最尤推定量3/{2*(X_1^2 , X_2^2 ,X_3^2)}まで出した後、分母に確率変数が入っているために期待値の出し方が分からなくなってしまいました。どなたかお知恵を貸して頂けませんでしょうか。 問題 母数¥theta(>0)を含んだ密度関数f(x)=√(¥theta / ¥pi)*exp(-¥theta*x^2) (下手な書き方ですみません。一応平均が0、分散が(1/2)*¥thetaの正規分布ということになると思います。) に於いて、無作為標本X_1,X_2,X_3が与えられた時の¥thetaの最尤推定量をTとする。この時Tの期待値を求めよ。

  • 標準偏差の不偏推定量

    http://ja.wikipedia.org/wiki/%E6%A8%99%E6%BA%96%E5%81%8F%E5%B7%AE にて「不偏分散の平方根 u は、標準偏差の不偏推定量ではない」と書かれており、他の書物等でも同等の記述が確認されます。 しかし、不偏分散は母分散の不偏推定量なのですよね? (この認識が間違いかもしれませんが) であれば単に不変分散の平方根を取れば、母集団の標準偏差の不偏推定量に成ると思うのですが、なぜなら無いのでしょうか? 何故ガウス関数を用いた特殊な式(あまり理解していません)を用いる必要があるのでしょうか? ご回答、宜しくお願い致します。

  • 統計学・推定量、分布とは?

    統計学を勉強をしているのですが 最良不偏推定量というものがでてきて、前提条件やら計算の仕方などは書いてあったのですが最良不偏推定量自体は何を表しているのかわかりません。ウィキも見たのですがいまいち理解できないので簡単な説明をお願いします もう一つ、分布について正規分布からカイ二乗分布、t分布、f分布の形に変形できるということはわかりましたが実際使うときに上の4つの分布のうちにどれを使うかを判断する方法はどのような方法でしょうか? 漠然としていますが宜しくお願いします

  • 最小線形不偏推定量と最小2乗推定量

    最小線形不偏推定量と最小2乗推定量について 重さα,βが未知の物体A,Bがあり、αとβを推定するために以下で測定しました。 AとBを左に載せるY1 AとBを左右に載せるY2 2回の測定を行いそれぞ れ確率変数Y1,Y2で表し、次の仮定をします。 Y1=α+β+U1 Y2=α-β+U2 U1とU2は独立で、E[Ui]=0、V[Ui]=σ^2をみなす確率変数を仮定する。 αの推定量とし、Y1,Y2の線形結合T=c1Y1+c2Y2を考える。 こと時、以下の質問についてご教授願います。 (1)Tの期待値 (2)Tの分散 (3)Tの期待値E[T]=αが恒常的に成り立つために(不偏推定量になるために)、c1,c2にはどのような関係が必要か (4)E[T]=αという条件の下で、c1,c2を求める(c1,c2は一意に定まるため、Tは最良線形不偏推定量になる) 以下では、最小2乗法でαとβの推定を行う (5)残差平方和SSをY1,Y2,α,βの関数として式で表す (6)残差平方和SSをα,βで偏微分 (7)α,βの最小2乗推定量を示す お手数ですが、宜しくお願いいたします。

  • 統計 不変推定量の難問

    μ^2 の不偏推定量の1つは 標本平均ー標本分散÷n となるようです。 μ^2 の不偏推定量の意味が分かりません。 よろしくお願いします。

  • 推定量

    統計の問題で 【分散の異なる正規分布 N(μ,σ1^2),N(μ,σ2^2) から2つずつ無作為標本をとる. このとき,μの有効推定量は大体幾らか?】 という問題があるのですが,よくわかりません. 分散が小さい推定量が「良い」ことは分かるのですが, 「これ以上良い推定量はない」といえるような推定量はあるのでしょうか?