• ベストアンサー

微分

曲線C:y=x^2-2x+2上の点PQにおける接線をl1、l2とし、l1、l2の交点をRとする。点P、Qのx座標をα、β(ただし、α<β)として、次の問いに答えよ。 l1はy=(アα-イ)x-α^2+ウ 微分だとは分かるのですがどう解いたらよいかわかりません。教えて下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

Cを y=f(x)=x^2-2x+2 とおく。 先ず f(α)= f'(x)= f'(α)= を求めて下さい。 後は、C上の点P(α,f(α))における接線の公式 y=f'(α)(x-α)+f(α) に代入して式を整理するだけ。 やってみて分からなければ補足に計算過程を書いて質問して下さい。

その他の回答 (1)

  • gohtraw
  • ベストアンサー率54% (1630/2966)
回答No.1

 曲線Cの式をy=f(x)とすると、これをxで微分したf’(x)はCの傾きになりますね。なので、F’(x)に例えばx=αを代入すると点PにおけるCの傾きが出ます。これと点Pにおける接線の傾きは同じなので・・・  以上により二本の接線が判ればその交点も出ますよね?

関連するQ&A

  • 数II・微分積分

    【問1】関数f(x)がf(x)=3x^2-x∫(1→0)f(t)dt+∫(0→-2)f(t)dtを満たす。 a,bを定数として、∫(1→0)f(t)dt=a…(1)、∫(0→-2)f(t)dt=b…(2)とおくと、(1)から、アa-イb=2、(2)からウa+b=エオが成り立つ。 したがってf(x)=3x^2+カx-キである。 【問2】2つの放物線y=-x^2+3x-2…(1)、y=x^2-(2a+1)x+2a…(2)がある。 ただし、a>0とする。 (1)とx軸とで囲まれた部分の面積をS1とすると、S1=ア/イである。 また、(1)、(2)の交点のx座標はウとa+エであるから、(1)、(2)で囲まれた部分の面積をS2とすると、S2=a^オ/カである。 更にS2=2S1となるときのaの値を求めるとa=キである。 【問3】放物線C:y=x^2-2x上の点Pのx座標をt(t>2)とする。 Pにおける接線をl1とし、原点OにおけるCの接線をl2とする。 このとき、l1の方程式はy=ア(t-イ)x-t^ウであり、l1とl2の交点をQとするとQのx座標はt/エ、l2およびCで囲まれた図形の面積S1はS1=t^オ/カキであり、2直線l1、l2とCで囲まれた図形の面積S2はS2=t^ク/ケコである。 ゆえに、S1:S2=サ:シである。

  • 数学得意な方

    放物線y=√2x^2-x+1をCとし、C上の点P(0,1)をとる。点PにおけるCの接線をLとするとLの方程式は y=アx+1である。 また、Lとx軸との交点をQとするとQの座標は(イ,0)である。 この時、点Qを中心とし、半径PQの円をDとすると、円Dの半径は√ウ であり、円Dの方程式は (x-エ)^2+y^2=オである。 放物線Cと円Dの共有点のうち、Pと異なる点をRとすると、Rの座標は(カ,√キ)である。 このとき、∠PQR=π/クであるから、放物線Cと、円Dとで囲まれてできる二つの図形のうち小さい方の面積は π/ケ-√コ/サ である。 ア- イ1 ウ2 エ1 オ2 カ1 キ2 ク4 ケ4 コ2 サ3

  • 微積(微分方程式)

    解き方、考え方、解答を教えてください。 問、曲線y=f(x)上の任意の点P(x,y)における接線の傾きが、その点Pのx座標とy座標の差に 等しいという。この問題を満たす微分方程式をつくれ。 点P(x ,y)における接線の方程式を Y - y = y' (X - x)を立てたのですが、このあと どのように解いていくかがわかりません。

  • 微分方程式の問題です。

    曲線y=f(x)(0<a≦x≦b)上の点P(t,f(t))(a<t<b)における接線をlとし、l上の点でそのx座標がt+1となる点をQとおく。原点をOとして、ベクトルOPとベクトルPQのなす角をθとする。次の問いに答えよ。 (1)cosθをtを用いて表せ。 (2)a=1/4,b=1,f(x)=√xのとき、θが最大となるtを求めよ。 (3)a=1/2,b=2とする。全てのt(1/2<t<2)についてベクトルOPとベクトルPQが直行し、f(1)=√3となるf(x)を求めよ。 という問題です。微分方程式は授業で習っておらず自力で勉強しています。解答がなく、解き方が分からないので教えていただけないでしょうか。よろしくお願いします。

  • 曲線C:y=X2乗(X≧0)について、C上の点

    曲線C:y=X2乗(X≧0)について、C上の点P(2、4)における接線をℓとする。 ℓの方程式はℓ:y=[ア]x-[イ] で表示され、接線ℓ、曲線Cおよびx軸で囲まれた部分の面積Sは S=[ウ]/[エ]である。 点Pをとおり、接線ℓに水食名直線mと曲線Cおよびy軸で囲まれた部分の面積Tは T=[オ][カ]/[キ] アイウエオカキに当てはまる数字を求めよ。 この問題のとき方と答えを教えてください>< チャート式で調べながらといた結果 ア4 イ4 ウ2 エ3 オ3 カ5 キ6  になりました。 でも全く自信がありません。本当にこの解答が合ってるのか知りたいです。どうかお願いします<(_ _)>

  • 曲線C:y=X2乗(X≧0)について、C上の点P(2、4)における接線をLとする。

    曲線C:y=X2乗(X≧0)について、C上の点P(2、4)における接線をLとする。 Lの方程式はL:y=[ア]x-[イ] で表示され、接線L、曲線Cおよびx軸で囲まれた部分の面積Sは S=[ウ]/[エ]である。 点Pをとおり、接線Lに水食名直線mと曲線Cおよびy軸で囲まれた部分の面積Tは T=[オ][カ]/[キ] アイウエオカキに当てはまる数字を求めよ。 この問題のとき方と答えを教えてください>< チャート式で調べながらといた結果 ア4 イ4 ウ2 エ3 オ3 カ5 キ6  になりました。 でも全く自信がありません。本当にこの解答が合ってるのか知りたいです。どうかお願いします<(_ _)>

  • 微分法(応用)の問題

    つまってしまったので助けてください。 問. 曲線 C1: y=e^x 上の点Pと曲線 C2: y=-e^(2-x) 上の点Qは, P,Qにおけるそれぞれの曲線の接線が平行であるように動くものとする。    PとQの距離が最小になるとき,直線PQと点Pにおける C1 の接線が直交することを示し,そのときのPとQの距離を求めよ。(添付画像参照) 私の解答. P(p, e^p), Q(q, -e^(2-q)) における接線が平行であるので, e^p=e^(2-q)     ∴ p+q=2   ・・・(1) このとき、 PQ^2 = (p-q)^2 + {e^p+e^(2-q)}^2   ・・・(2) (1)を適用しqを消去し、整理すると (2)⇔PQ^2=4e^2p + 4(p^2-2p+1) となる。 f(p)=4e^2p + 4(p^2-2p+1) とおき、微分したのですが最小値を求めることができませんでした。 この後どのように操作すれば、よいのでしょうか。 なお、問題集では q を消去せずに "p=p0, q=q0=2-p0のとき最小になるとすると  d/dp(PQ^2)|_P=p0 .................." としていました。 よろしくおねがいします。

  • 四訂版 シニア数学演習IIIA B 194 解答

    194 アイウエの入る座標を求めよ 原点がOである座標平面上に点A(7,1)がある。また、直線Y=X/2をlとする。 (1)X軸に関して点Aと対称な点Bの座標は(ア  )であり、直線lに関して点Aと対称な点Cの座標は(イ  )である。 (2)点PはX軸上を動き、点Qは直線l上を動くものとする。このとき、AP+PQ+QA を最小にする点Pの座標は(ウ  )であり、Qの座標は(エ  )である。 わかるかた解答教えてください!

  • この問題教えてください

    曲線y=x^2上の異なる2点P(a,a^2),Q(b,b^2)における接線を、それぞれl,mとする。このとき、次の問に答えろ。 (1)lとmの交点Rの座標を、a,bを用いてあらわせ。 (2)θ=∠PRQとする。Rが{(√3+1)/2,(2√3+3)/4}に一致するとき、(tanθ)^2および(tan2θ)^2を求めよ。

  • 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。

    曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。次の問に答え... 曲線上の点P(x,y)における法線をLとし、Lとx軸との交点をQとする。 次の問に答えよ。ただし、Oは原点を表し、|PQ|、|OQ|はそれぞれ線分PQ、OQの長さを表す。 (1) Lがつねに定点(a,b)を通る曲線の方程式を求めよ。 (2) |PQ|=|OQ|となる曲線の方程式を求めよ。 (1)は以下のように考えました。 P(x,y)における法線はy’(Y-y)+X-x=0で、点(a,b)を通るので y’(b-y)+a-x=0 yy’-by’+ x-a=0 (y-b)dy=-(x-a)dx 両辺を積分して 整理すると、(x-a)^2+(y-b)^2=a^2+b^2 (2)は方程式の立て方が分かりません。 アドバイスお願い致します。