• ベストアンサー
  • 暇なときにでも

扇形の面積について

第一象限において、 「単位円周上の点 A (cos θ , sin θ ) と x 軸上の点 B (1,0)、原点 O を考える。線分 AO、BO と弧 AB によって囲まれた領域の面積は θ /2 である。」 が、分かりません。すいません。なんで「θ /2」なんでしょうか。m(_ _)m

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

単位円だから、θラジアンのおうぎ形の弧の長さはθ(弧度法の前提) おうぎ形の面積は弧×半径÷2(三角形の面積の求め方と同じ) したがって、θ/2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません基本ができてなくて。ありがとうございます。

その他の回答 (2)

  • 回答No.3

弧度法で計算しているのでしょう。 単位円では,中心角でそれに対応する弧の長さを表します また,扇形の面積Sは,半径R,弧の長さLを使って S=(1/2)×L×R です 今,中心角がΘなら,S=(1/2)×Θ×1 です。 

共感・感謝の気持ちを伝えよう!

質問者からのお礼

速やかなるご回答ありがとうございました。

  • 回答No.1

扇形を含む円の面積×中心角÷360度 微小な三角形の集合とみなして、弧の長さ×半径÷2 いずれの計算でも、「θ/2」となります。 図を描いて、中心角はどうだか考察してみるとか。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

すいません。早速ありがとうございます。

関連するQ&A

  • 第一象限で、x軸y軸に端がある長さ1の線分の軌跡の面積は?という問題で

    第一象限で、x軸y軸に端がある長さ1の線分の軌跡の面積は?という問題で、 その領域をSとすると、原点、(0,1)、(1,0)の三角形に収まり、原点、(0,√2/2)、(√2/2,0)の三角形を含むので、1/4<S<1/2であることがわかります。 y=(-tanθ)x+sinθ と置き、θで偏微分し、 y'={-x/(cosθ)^2}+cosθとしてx=(cosθ)^3となるθの時、最大値を取り、 その際、y=(sinθ)^3だから、∫(0~π/2)(sinθ)^3dθと置くと、答えは、2/3となり、間違いでした。 続いて、∫(0~1)(sinθ)^3dx で計算すると、3/16で間違いだとわかります。 どこが、いけないのか教えてください。

  • 扇形の弧の長さを教えてください!

    こんにちは。 タイトルの通り、扇形の弧の長さについて、 求め方が分からないため質問させていただきました。 考えているのは、添付画像の赤く色がついている弧ABの長さです。 ここで、O点は扇形を描く原点、線分OBは扇形の半径であり、 線分ACは線分OBから線分OCの長さだけ平行移動した線です。 なお、図に示してはいませんが、OBに対するOAの角度は分かりません。 まとめますと、OCとOBの長さしか分かっていない状態で、 弧ABの長さは求められるのでしょうか? また、よろしければ仮にOCの長さが4,5mm、OBの長さが54mmのとき、 ABの長さはいくらになるかお教えいただけると幸いです。 ご回答よろしくお願いします。

  • 第一象限で、x軸y軸に端がある長さ1の線分の軌跡の面積は?という問題で

    第一象限で、x軸y軸に端がある長さ1の線分の軌跡の面積は?という問題で、 先ほどの質問に訂正をします。 その領域をSとすると、原点、(0,1)、(1,0)の三角形に収まり、原点、(0,√2/2)、(√2/2,0)の三角形を含むので、1/4<S<1/2であることがわかります。 y=(-tanθ)x+sinθ と置き、θで偏微分し、 y'={-x/(cosθ)^2}+cosθとしてx=(cosθ)^3となるθの時、最大値を取り、 その際、y=(sinθ)^3だから、∫(0~π/2)(sinθ)^3dθと置くと、答えは、2/3となり、間違いでした。 続いて、∫(0~1)(sinθ)^3dx で計算すると、3π/32となり、一応範囲になります。 しかし、これは、私の大学入試で出た問題でして、ウン年前には、解けた問題でした。 この解き方だと、ウォリス積分を知らなかった私に解けたはずはありません。 どなたか解法を教えてください。

  • 円の面積を求めたい

    xy平面上では円の面積がπr^2と公式通りもとまるのですが・・・ いま、円の面積を求める為に3次元のxyz空間を考え、半径rの円の中心を原点Oにとります。 円の中心からz方向に距離aだけ離れた点A(0,0,-a)から、円周上の任意の点Pまで結んだ線を線分APとし、線分AO(点Oは原点)と線分APのなす角度をθfとします。 [ここからの計算のどこから間違ってるのかが分からないのです] 任意の円の半径をsとし、線分AOから線分APまでの任意の角度をθとすると、微小円の面積はその円周に微小なθの変化量dθをかけて求まると考えると、いま、s=a*tanθなので円の全面積Sは、S=∫2πa*tanθdθ(積分範囲は0~θfまで)となり、これを計算すると、S=-2πa*logcosθf となってしまいπr^2とは全く違った結果になってしまいます。 どなたか欠点を指摘していただけないでしょうか。 よろしくお願いします。

  • 円、おうぎ形の問題

    次の問題の解答がさっぱりわからなくて困っています。 板書を任せられているので、正確な解答をしていただけるとありがたいです。 長さ4の線分ABについて、2点A、Bを中心にそれぞれ半径4の円をかき、 交点の1つをPとする。 (1)△ABPに内接する円O1、BPを弧とするおうぎ形ABPに内接する円O2について (円O1の半径)=ア√イ/ウ、(円O2の半径)=エ/オ (円O1の面積):(円O2の面積)=1:カ/キ であり、 円O1の中心をO1、円O2の中心をO2とすると O1O2=ク-ケ√コ/サ である。 (2)線分AB、弧AP、弧BPのすべてに接する円O3の中心をO3とすると sin∠O3AB=シ/ス であり、 △O3ABの外接円O4の半径はセソ/タチである。 また、点A´が円O4の周上にあるとすると、△O3A´Bの面積の最大値は ツテ/トナ である。 ちなみに、O1の半径→1/2・4・4・sinA=1/2r(4+4+4)よりr=2√3/3  までは求めました。

  • 円、おうぎ形の問題(難問です)

    次の問題の解答がさっぱりわかりません。 よろしくお願いします。 長さ4の線分ABについて、2点A、Bを中心にそれぞれ半径4の円をかき、 交点の1つをPとする。 (1)△ABPに内接する円O1、BPを弧とするおうぎ形ABPに内接する円O2について (円O1の半径)=ア√イ/ウ、(円O2の半径)=エ/オ (円O1の面積):(円O2の面積)=1:カ/キ であり、 円O1の中心をO1、円O2の中心をO2とすると O1O2=ク-ケ√コ/サ である。 (2)線分AB、弧AP、弧BPのすべてに接する円O3の中心をO3とすると sin∠O3AB=シ/ス であり、 △O3ABの外接円O4の半径はセソ/タチである。 また、点A´が円O4の周上にあるとすると、△O3A´Bの面積の最大値は ツテ/トナ である。

  • 円、おうぎ形の問題(難問です)

    次の問題の解答がさっぱりわからなくて困っています。 よろしくお願いします。 長さ4の線分ABについて、2点A、Bを中心にそれぞれ半径4の円をかき、 交点の1つをPとする。 (1)△ABPに内接する円O1、BPを弧とするおうぎ形ABPに内接する円O2について (円O1の半径)=ア√イ/ウ、(円O2の半径)=エ/オ (円O1の面積):(円O2の面積)=1:カ/キ であり、 円O1の中心をO1、円O2の中心をO2とすると O1O2=ク-ケ√コ/サ である。 (2)線分AB、弧AP、弧BPのすべてに接する円O3の中心をO3とすると sin∠O3AB=シ/ス であり、 △O3ABの外接円O4の半径はセソ/タチである。 また、点A´が円O4の周上にあるとすると、△O3A´Bの面積の最大値は ツテ/トナ である。

  • 中2 数学 教えてください><!

    まじめにお答えいただけるかたで,分かりやすく中2でも分かるように説明お願いします>< 問題は下に載っています↓ 図(画像)で点Oは線分のABの中点です。このとき,AO,BOをそれぞれ直径とする2つの半円の弧の長さの和は,ABを直径とする半円の弧の長さと等しくなります。このことを,文字式を使って説明しなさい。

  • 線分ABは半径4cmの半円Oの直径である。点Cは弧AB上にあり、弧AC:弧CB=3:1である。この半円Oを、弦ACを折り目として折ったとき、弧ACが直径ABと交わる点をDとする。 (1)∠CABの大きさを求めよ。 弧AC:弧CB=3:1であるから、 ∠COB=180°÷4=45°ですよね。 よって、∠CAB=45°/2 だとおもいます。 (2)線分ADの長さを求めよ。 点Dの対称の点をD’とする。と考える。 点D’はABの垂直二等分線上にあると思います。(確信がないです。) そうすると△AOD'より AD=AD'=4√2となると思います。 (3)次の2つ線分AC、ADと弧CDで、囲まれた部分の面積を求めよ。ただし、円周率をπとする。 私の考えは点Cから線分ABに垂線を引き、交わった交点をEとする。 △CAEの面積からいらない部分を引くことを考えて行った。しかし、よくわからずに詰まっています。 すいませんが(2)、(3)の考え方、解説等をお願いします。

  • 数学の面積を求める問題です。

    図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。)