• 締切済み

ベクトルの問題です

平面上の4点OABCがOA・OB=1,OB・OC=4,OC・OA=9を満たしている。点Cが直線AB上にあるとき次が成立することを示せ。(1)点Cが線分AB上にあるならば2<|OC|<3 (2)点Cが線分AB上にないならば|OC|≧6 (OA,OB,OCと書きましたがすべてベクトルを意味します。)おねがいします。

みんなの回答

  • htms42
  • ベストアンサー率47% (1120/2361)
回答No.2

結構難しかったです。 質問者様はどこまでやられましたか。 方針は#1に書かれているのと同じです。 でも思い込みに引きづられてしまうと行き詰まります。 AB線上にあって AB線分上にある場合とない場合との区別が「?」と思うのです。内側の領域と外側の領域が不連続というのがピンとこないのですね。 結果だけ書きます。 OC=xOA+yOBとします。 xy=0の場合、|OC|=6です。 xy≠0の時 |OC|^2=9x+4y xyの存在範囲は (1)x<0、9x+4y>36 (2)x>0、y>0、9x+4y<36 (3)x>4、9x+4y>36 ここでx+y=1とします。 |OC|^2=9x+4y=5x+4です。 (1)x+y=1の直線は領域(1)を通りません。 (2)x+y=1ですから0<x<1です。   4<|OC|^2<9 2<|OC|<3 (3)x+y=1は 9x+4y=36と交点を持ちます。   この領域内では9x+4y>36ですから|OC|>6です。 #1に |OA|^2 ≧ 0, |OB|^2 ≧ 0, |OA|^2 |OB|^2 ≧ 1 とあります。 等号は不要です。 内積≠0ですから OA≠0、OB≠0,OC≠0 です。 (点A、B、Cが点Oに重なる可能性を考える必要はないだろうと言うことでもあります。) ここで等号を入れられたのは問題文の中にある|OC|≧6の等号に引きづられたからでしょう。 ところがこの等号はxy=0の時には|OC|=6となるというところから来ているものです。私もここでは混乱しました。 x、y平面で領域のグラフを描いてx+y=1の存在範囲を調べるとわかりやすいです。

全文を見る
すると、全ての回答が全文表示されます。
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

つらつら手計算した感じでは, 「C が直線 AB 上にある」ことから OC = tOA + (1-t)OB とおき, OA・OB=1 を使って OB・OC=4, OC・OA=9 を t (と|OA|, |OB|) の式で表します. そして |OA|^2 ≧ 0, |OB|^2 ≧ 0, |OA|^2 |OB|^2 ≧ 1 から t の範囲を限定します. ここまでは (1), (2) と無関係に処理できて, ここから (1) と (2) の場合に分ければ OK.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ベクトルの問題です。解答よろしくお願いします。

    四面体OABCを考えa=OA,b=OB, c=OC(ベクトル)とする。また、線分OA、OB、OCを2対1に内分する点をそれぞれA',B'.C',とし、直線BC'と直線B’Cの交点をD、3点A'、B、C,を通る平面と直線ADとの交点をEとする。 OE(ベクトル)をa, b, c,(ベクトル)で表してください。

  • ベクトルの問題です。教えてください!

    四面体OABCがあり、OA=OB=OC=5、∠AOB=∠BOC=∠COA=90°である。 辺ABを2:1に内分する点をD、辺OCの中点をE、線分DEの中点をFとする。 また、OA=a、OB=b、OC=c(ベクトルは省略させてください。)とする。 また直線AFと三角形OBCとの交点をPとするとき三角形OAPの面積を求めよ。 OPをベクトルで表すまではできたと思うのですが、 三角形の面積をどうやって求めればいいのかが分かりません。 詳しい解き方を教えてください!

  • 空間座標とベクトルの問題です

    どうしても回答法が分からない問題があります(>_<) 《問題》 四面体OABCがあり,OA⊥OC,OB⊥OC,OA=OC=1,OB=2,cos∠AOB=-1/4である。点Oから辺AB,平面ABCに垂線を下ろし,それらの交点をそれぞれD,Eとする。また,↑OA=↑a,↑OB=↑b,↑OC=↑cとする。 (1)点Dは線分ABを【ア】:【イ】に内分しており,|↑OD|=【ウ】である。また,四面体OABCの体積は【エ】である。 (2)↑OE=【オ】↑a+【カ】↑b+【キ】↑cであり,↑DC=【ク】↑DEであるので,3点D,E,Cは同一直線上にある。 《答え》 ア‥1 イ‥3 ウ‥(√10)/4 エ‥(√15)/12 オ‥6/13 カ‥2/13 キ‥5/13 ク‥13/5 よろしくお願いしますm(_ _)m

  • ベクトルの問題…

    ベクトルの問題… OA=OB=OC=2 ∠BOC=90°の四面体OABCがある。 △ABCの重心をG 線分OGを3:2に内分する点をD 線分ADと平面OBCとの交点をEとする。→OA=→a →OB=→b →OC=→cとする (1)→ODを→a →b →cを用いて表せ (2)AD:DEを求めよ とあり (1)は1/5(→a+→b+→c) 理解できます しかし(2)が理解できません。 解答↓ →AD=→OE-→OA =-4/5→a+1/5→b+1/5→c →OE=→OA+t→ADとすると →OE=(1-4/5t)→a+1/5t→b+1/5t→c 4点OABCは同じ平面上になく 点Eは平面OBC上にあるから 1-4/5t=0 ゆえにt=5/4 よってAD:DE=4:1 とあるのですが…… 『4点OABCは同じ平面上になく 点Eは平面OBC上にあるから 1-4/5t=0』 の所が分かりません。 解説よろしくお願いします。

  • ベクトル

    四面体OABCにおいて  →  → |OA|=|OB|=1 → → OA・OB=1/12 → → OA・OC=1/2 → → OB・OC=1/3 のときに、辺OAを2:1に内分する点をDとおき、線分DB上の点Pを       → → ベクトルOP、PCが垂直になるようにとる。 → →  → →   → → OA=a  OB=b  OC=cとおく。    → → → (1)OPをa、bを用いて表せ。 (2)直線APと直線OBとの交点をEとおく。    → →    OEをbを用いて表せ。 という問題なのですが、(1)は平行条件と垂直条件を使って解いてみたのですが、途中でよくわからなくなってしまいました; どなたかお願いします。。

  • ベクトル

    ("→"は省略します) 平面上に│OA│=2,│OB│=3,OA・OB=5を満たす3点O,A,Bがある。直線OAに関して点Bと対称な点をC,∠AOBの二等分線が線分ABと交わる点をD,直線ABと直線OCの交点をEとする。OA=a,OB=bとするとき,OC,OE,ODをa,bを用いて表せ。 という問題がうまくできないのでやり方と解答をわかりやすく教えてください。

  • 【至急】空間ベクトルの問題

    明日までの宿題なのですが、答えが分からず不安です 解答(解法)を書いて頂けると助かります・・・! どうぞよろしくおねがいします<m(__)m> 四面体OABCがあり、 OA=OC=AC=1, OB=2, BC=√3, ∠AOB=90° である。 また、三角形OABを含む平面をαとし、 点Cを通りαに垂直な直線とαの交点をHとする。 さらに、OAベクトル=aベクトル, OBベクトル=bベクトル, OCベクトル=cベクトル とする。 (1)内積 aベクトル・bベクトル 、bベクトル・cベクトル、 cベクトル・aベクトル の値を求めよ。 (2)OHベクトルをaベクトル、bベクトルを用いて表せ。また、線分CHの長さを求めよ。

  • 空間ベクトルの問題

    空間ベクトルの問題が分からないので、解き方・考え方を教えてください。「1辺の長さが1の正四面体OABCにおいて、辺OAの中点をP、辺ABを2:1に内分する点をQ、辺BCを1:4に内分する点をRとする。→OA=→a、→OB=→b、→OC=→cとするとき、 (1)線分PRを1:2に内分する点をMとし、直線OMと平面ABCの交点をNとするとき、→ONを→a、→b、→cを用いて表しなさい。 (2)辺OC上に、∠QPS=90°になるように点Sをとるとき、OS:SCを簡単な比で表しなさい。 (3) (2)のSに対して4点P、Q、R、Sが同一平面上にあることを示しなさい。」

  • ベクトルの問題です。使われている定義の意味?

    三角形OABにおいて、OA=1、OB=4、∠AOB=2/3πとし、点Oから辺ABにおろした垂線の足をH、辺OBの中点をM、線分OHと線分AMの交点をCとします。 OHベクトルは6/7OAベクトル+1/7OBベクトルだとわかりました。 しかし、OCベクトルをOAベクトルとOBベクトルを使って表す方法が解説を読んでもわかりません。 模範解答の中では、OCベクトル=kOHベクトルとして、OBベクトルをOMベクトルに直し、 Cは直線AM上の点だから6/7k+2/7k=1になる。など書いてありますが、よくわかりません。 わかりやすく解説していただけるとうれしいです。 よろしくおねがいします

  • ベクトルの問題です@_@ 

    座標平面状の3点O(0.0), A(2,-1)、B(-1,2)において、OA→=a→、OB→=b→とする。 線分ABを2:1に内分する点をCとするとき、OC→と向きが同じで長さが3であるベクトルをa→,b→を用いてあわらせ! この問題どなたか教えて下さい>_<!! OC→=2/3b→+1/3a→ と分点公式を使いましたけど、このあとどうしたらよいのでしょうか? 誰か教えてください、お願いします>_<!!