• ベストアンサー
  • すぐに回答を!

変数変換

下記の変数変換はあっているでしょうか?また、論文から引用した式なのですが、どうやって変数変換を行っているか、途中式が分かりません。分かる方がいましたら、教えてください! 1/y*(d^2x/dφ^2)+y*(d^2x/dψ^2)+d/dφ*(1/y)*(dx/dφ)+(dy/dψ)*(dx/dψ)=0 ξ=tanhaφを用いてφ=-∞~+∞をξ=-1~+1に変換すると上式から、次式が得られる。 -2a^2*ξ(1-ξ^2)*(dx/dξ)+(a(1-ξ^2))^2*(d^2x/dξ^2)+y*(d^2x/dψ^2)-(1/y)*(a(1-ξ^2))^2*(dy/dξ)*(x/dξ)+y*(dy/dψ)*(dx/dψ)=0

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数54
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

変数変換後の式にはエラーがあると思います。 ご存知のようにξ=tanh(aφ)を用いて(微分のChain ruleとで) (d/dφ)=(dξ/dφ).(d/dξ) と dξ/dφ=sech^2(aφ)a=a{1-tanh^2(aφ)}=a(1-ξ^2) を使って (d/dφ)=(dξ/dφ).(d/dξ)=a(1-ξ^2).(d/dξ) (d/dφ)^2=(d/dφ){a(1-ξ^2).(d/dξ)} =a(1-ξ^2).(d/dξ){a(1-ξ^2).(d/dξ)} =a^2(1-ξ^2).(d/dξ){(1-ξ^2).(d/dξ)} あるいは微分を実行して =a^2(1-ξ^2).{(-2ξ).(d/dξ)+(1-ξ^2).(d/dξ)^2} など d/dφ*(1/y)=(dξ/dφ).(d/dξ)(1/y)=a(1-ξ^2).(-1/y^2)(dy/dξ) など ---------- ξ=tanhaφを用いての変換では、ψの部分は変換されていませんので、第1式にある第2項と第4項は、変換後もそのまま変わらずに第3項と第5項にあるべきですが、 y*(d^2x/dψ^2) と (dy/dψ)*(dx/dψ) は変換後には y*(d^2x/dψ^2) と y*(dy/dψ)*(dx/dψ) になっています。変換前の第4項にyが余分に掛かって変換後の第5項になっています。 φに関係していた部分は、変換後の第1項、第2項、第4項ですが、それぞれ(1/y)の因子が足りません。もし、全体にyを掛けたとすれば、変換後の第3項にYがひとつ足りません。変換後の対応する順に並べれば以下のようになると思います。 -2(1/y)*a^2*ξ(1-ξ^2)*(dx/dξ) +(1/y)*(a(1-ξ^2))^2*(d^2x/dξ^2) +y*(d^2x/dψ^2) -(1/y)^2*(a(1-ξ^2))^2*(dy/dξ)*(x/dξ) +(dy/dψ)*(dx/dψ)=0

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な解説ありがとうございます。 もう一度、見直してみます。

その他の回答 (1)

  • 回答No.1

普通に、 dx/dφ = dx/dξ・dξ/dφ d^2x/dφ^2 = d^2x/dξ^2・(dξ/dφ)^2 + dx/dξ・d^2ξ/dφ^2 といった関係を使えばいいのでは。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 変数変換と微分

    よろしくお願いします。ある本で次の図と記述があります。 ※vxのxはvの右下に付く添え字です。 Fxx=μ(dvx/dy)+μ(dvy/dx) これを以下の式でxy座標からXY座標に変換 X=(x+y)/√2,Y=(-x+y)/√2 上記の両式をt,x,yで微分すると VX=(dX/dt)=(vx+vy)/√2 VY=(dY/dt)=(-vx+vy)/√2 (∂X/∂x)=1/√2,(∂X/∂y)=1/√2,(∂Y/∂x)=-1/√2,(∂Y/∂x)=1/√2 が得られます。 さらに整理して vx=(VX-VY)/√2,vy=(VX+VY)/√2 これらを使って,一番最初の式に出てくる微分(dvx/dy)と(dvy/dx)を変数X,Yによる微分に変数変換します。 (dvx/dy)=(∂X/∂y)(∂vx/∂X)+(∂Y/∂y)(∂vx/∂Y) (dvy/dx)=(∂X/∂x)(∂vy/∂X)+(∂Y/∂x)(∂vy/∂Y) ここで質問です。  上記の式の最後の2行 つまり, (dvx/dy)=(∂X/∂y)(∂vx/∂X)+(∂Y/∂y)(∂vx/∂Y) (dvy/dx)=(∂X/∂x)(∂vy/∂X)+(∂Y/∂x)(∂vy/∂Y)  この式が出てきた経緯が分かりません。(dvxをdyで微分するとなぜ右辺のようになるのかが分かりません。同様にdvyをdxで微分するとなぜ右辺のようになるのかが分かりません。)  どなたか解説をお願いできないでしょうか。

  • 変数分離の規則について

    変数分離の規則について 例えば、3y^2(dy/dx)=y^3+xですが、 y^3=α 3y^2=dα/dy より dα/dy・dy/dx=α+x dα/dx=α+x とαとxの式に変換して構わないのでしょうか? ご指導願います。

  • 変数変換?

    まずx^2y''+xy'-y=0という問いがあるのですがy1=xで、y=y1zとおきyが解であるときのzの満たす方程式とはどういうことなのでしょうか?またx^2y"+4xy'+2y=1,y(1)=y'(1)=0という問いで変数変換を考え(d^2y/dt^2)をy"=(d^2y/dx^2),y=(dy/dx),(dy/dt)で表し、元の方程式に代入してy(t)の満たす方程式にしたのですがそこからどう解けばいいのかわかりません。また元の方程式を解く場合(変数変換をしない場合?)と上記の作業をした場合では解き方、解等違ってくるのでしょうか?どうかご教授お願いします。

  • dx を変数として扱える理由

    高校の数学では、微分を次のように習いました。 y=f(x) ...f(x)はxの関数 yをxで微分することを次のように書く。 dy/dx=df(x)/dx 例えば y=f(x)=x^2+3x+4 なら dy/dx=2x+3 高校の授業で数学の先生の漏らした言葉に、 dx は、ひとつの変数と扱って計算してよい。 とすると dy=(2x+3)dx と書ける。 ここで積分の魔法をかけると ∫dy=∫(2x+3)dx y+A=x^2+3x+B (A,Bは定数) なんと、これはA,Bを B-A=4とすれば 最初のf(x)と一致してます。 このようなめちゃくちゃな話をそのまま信じるのも あれなので、こんな計算が許される理由を教えてください。

  • 重積分の変数変換について

      u = x + y, v = x - y という変換をしたとき   du = (∂u/∂x)dx + (∂u/∂y)dy = dx + dy.   dv = (∂v/∂x)dx - (∂v/∂y)dy = dx - dy.   ∴dudv = dx^2 - dy^2 = 0 となってしまい   dudv = 2dxdy という関係式が導けません。  上記を行列で表すと   ┌ ┐ ┌        ┐┌ ┐ ┌  ┐┌ ┐   |du|=|∂u/∂x ∂u/∂y||dx|=|1 1||dx|   |dv| |∂v/∂x ∂v/∂y||dy| |1 -1||dy|   └ ┘ └        ┘└ ┘ └  ┘└ ┘.   abs|1 1|= 2     |1 -1| となって、たしかにヤコビアンは 2 になるのですが。  上の考え方はどこがおかしいのでしょう?

  • 変数分離形微分方程式の導入における式の展開について

    変数分離形微分方程式の導入において、参考書に次のような式の展開がありました。 y=f(x)において、         Δy/Δx≒dy/dx         Δy≒dy/dx・Δx         dy=dy/dx・Δx(近似式)・・・(1) ここで、y=x とすると、         dx=dx/dx・Δx より         dx=Δx・・・(2) (2)を(1)に代入すると、         dy=dy/dx・dx 上の式で、y=x としていますが、なぜなのでしょうか? y=x は y=f(x) の関数の1つに過ぎないと思うのです。一般化しているように思えないのですが・・・ 宜しくお願い致します。

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 2次微分の変数変換

    dy/dx=(dy/du)(du/dx) とかけて、dy/dxからdy/duの関係に変換することは積分でよくあります。 ですが、2次微分 d^2y/dx^2 をdy/duの関係に書き換えるとどうなりますか。 たとえば、sinx=uとしますと、dy/dx=(dy/du)cosxになりますが、 d^2y/dx^2はどうでしょう。 うまく説明できていないかもしれませんが、 どなた分かる方がいらっしゃいましたら、ご教示お願いします!

  • 多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計

    多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計算するには? xとyに関する多変数関数f(x,y)と、g(x,y)が与えられたとき、微分∂f/∂gを計算するにはどうしたらよいでしょうか?(そもそも偏微分なのだろうか?) 具体例で考えます。 f(x,y) = (x+2y)^2 g(x,y) = x+2y である場合。当然∂f/∂g = 2 gです。このような場合は問題ありませんが、 f(x,y) = x + 3y g(x,y) = x + 2y のような場合はどのように考えたらよいのでしょうか? 全微分の関係を使って考えてみました。 df(x,y) = (∂f/∂x) dx + (∂f/∂y) dy + O(dx,dy) = dx + 3 dy + O(dx,dy) dg(x,y) = (∂g/∂x) dx + (∂g/∂y) dy + O(dx,dy) = dx + 2 dy + O(dx,dy) ∂f/∂g = limit_{dx→0,dy→0} df/dg を考えれば良いのではないかと。 どの方向から極限をとっても極限値が変わらないと仮定して、 つまりdx = dyとして、極限を考えると。 ∂f/∂g = 4/3 とても正しいとは思えないのですが、他にどう考えればよいのかわからず悩んでいます。 そもそも、微分が存在しないと言うことなのでしょうか? 質問は以下の2点です。 (1)この様な場合、どのように考えていけばいいのでしょうか? (2)この様な微分に関して、数学的に何か名前があるのでしょうか?分野名など。 以上 よろしくお願いします。

  • 微分の記号

    微積(数学III学習中です) d/dx と dy/dx d/dy と dx/dy の違いが分かりません。 具体的に、 問題 y^3=x^2 について   dy/dxをx,yの式で表すとき 答え・・・ (d/dx)y^3=2x   ・・・・・・・・・・・・dのみ?   (dy/dx)(d/dy)y^3=2x ・・・・・・・・・・・・いきなりdy/dx? 3y^2(dy/dx)=2x ゆえに(dy/dx)=2x/3y^2 でパニックになりました。